Metamath Proof Explorer


Theorem dvcof

Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvcof.s φS
dvcof.t φT
dvcof.f φF:X
dvcof.g φG:YX
dvcof.df φdomFS=X
dvcof.dg φdomGT=Y
Assertion dvcof φTDFG=FSG×fGT

Proof

Step Hyp Ref Expression
1 dvcof.s φS
2 dvcof.t φT
3 dvcof.f φF:X
4 dvcof.g φG:YX
5 dvcof.df φdomFS=X
6 dvcof.dg φdomGT=Y
7 3 adantr φxYF:X
8 dvbsss domFSS
9 5 8 eqsstrrdi φXS
10 9 adantr φxYXS
11 4 adantr φxYG:YX
12 dvbsss domGTT
13 6 12 eqsstrrdi φYT
14 13 adantr φxYYT
15 1 adantr φxYS
16 2 adantr φxYT
17 4 ffvelcdmda φxYGxX
18 5 adantr φxYdomFS=X
19 17 18 eleqtrrd φxYGxdomFS
20 6 eleq2d φxdomGTxY
21 20 biimpar φxYxdomGT
22 7 10 11 14 15 16 19 21 dvco φxYFGTx=FSGxGTx
23 22 mpteq2dva φxYFGTx=xYFSGxGTx
24 dvfg TFGT:domFGT
25 2 24 syl φFGT:domFGT
26 recnprss TT
27 2 26 syl φT
28 fco F:XG:YXFG:Y
29 3 4 28 syl2anc φFG:Y
30 27 29 13 dvbss φdomFGTY
31 recnprss SS
32 15 31 syl φxYS
33 16 26 syl φxYT
34 dvfg SFS:domFS
35 ffun FS:domFSFunFS
36 funfvbrb FunFSGxdomFSGxFSFSGx
37 15 34 35 36 4syl φxYGxdomFSGxFSFSGx
38 19 37 mpbid φxYGxFSFSGx
39 dvfg TGT:domGT
40 ffun GT:domGTFunGT
41 funfvbrb FunGTxdomGTxGTGTx
42 16 39 40 41 4syl φxYxdomGTxGTGTx
43 21 42 mpbid φxYxGTGTx
44 eqid TopOpenfld=TopOpenfld
45 7 10 11 14 32 33 38 43 44 dvcobr φxYxFGTFSGxGTx
46 reldv RelFGT
47 46 releldmi xFGTFSGxGTxxdomFGT
48 45 47 syl φxYxdomFGT
49 30 48 eqelssd φdomFGT=Y
50 49 feq2d φFGT:domFGTFGT:Y
51 25 50 mpbid φFGT:Y
52 51 feqmptd φTDFG=xYFGTx
53 2 13 ssexd φYV
54 fvexd φxYFSGxV
55 fvexd φxYGTxV
56 4 feqmptd φG=xYGx
57 1 34 syl φFS:domFS
58 5 feq2d φFS:domFSFS:X
59 57 58 mpbid φFS:X
60 59 feqmptd φSDF=yXFSy
61 fveq2 y=GxFSy=FSGx
62 17 56 60 61 fmptco φFSG=xYFSGx
63 2 39 syl φGT:domGT
64 6 feq2d φGT:domGTGT:Y
65 63 64 mpbid φGT:Y
66 65 feqmptd φTDG=xYGTx
67 53 54 55 62 66 offval2 φFSG×fGT=xYFSGxGTx
68 23 52 67 3eqtr4d φTDFG=FSG×fGT