Description: The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvcof.s | |
|
dvcof.t | |
||
dvcof.f | |
||
dvcof.g | |
||
dvcof.df | |
||
dvcof.dg | |
||
Assertion | dvcof | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcof.s | |
|
2 | dvcof.t | |
|
3 | dvcof.f | |
|
4 | dvcof.g | |
|
5 | dvcof.df | |
|
6 | dvcof.dg | |
|
7 | 3 | adantr | |
8 | dvbsss | |
|
9 | 5 8 | eqsstrrdi | |
10 | 9 | adantr | |
11 | 4 | adantr | |
12 | dvbsss | |
|
13 | 6 12 | eqsstrrdi | |
14 | 13 | adantr | |
15 | 1 | adantr | |
16 | 2 | adantr | |
17 | 4 | ffvelcdmda | |
18 | 5 | adantr | |
19 | 17 18 | eleqtrrd | |
20 | 6 | eleq2d | |
21 | 20 | biimpar | |
22 | 7 10 11 14 15 16 19 21 | dvco | |
23 | 22 | mpteq2dva | |
24 | dvfg | |
|
25 | 2 24 | syl | |
26 | recnprss | |
|
27 | 2 26 | syl | |
28 | fco | |
|
29 | 3 4 28 | syl2anc | |
30 | 27 29 13 | dvbss | |
31 | recnprss | |
|
32 | 15 31 | syl | |
33 | 16 26 | syl | |
34 | dvfg | |
|
35 | ffun | |
|
36 | funfvbrb | |
|
37 | 15 34 35 36 | 4syl | |
38 | 19 37 | mpbid | |
39 | dvfg | |
|
40 | ffun | |
|
41 | funfvbrb | |
|
42 | 16 39 40 41 | 4syl | |
43 | 21 42 | mpbid | |
44 | eqid | |
|
45 | 7 10 11 14 32 33 38 43 44 | dvcobr | |
46 | reldv | |
|
47 | 46 | releldmi | |
48 | 45 47 | syl | |
49 | 30 48 | eqelssd | |
50 | 49 | feq2d | |
51 | 25 50 | mpbid | |
52 | 51 | feqmptd | |
53 | 2 13 | ssexd | |
54 | fvexd | |
|
55 | fvexd | |
|
56 | 4 | feqmptd | |
57 | 1 34 | syl | |
58 | 5 | feq2d | |
59 | 57 58 | mpbid | |
60 | 59 | feqmptd | |
61 | fveq2 | |
|
62 | 17 56 60 61 | fmptco | |
63 | 2 39 | syl | |
64 | 6 | feq2d | |
65 | 63 64 | mpbid | |
66 | 65 | feqmptd | |
67 | 53 54 55 62 66 | offval2 | |
68 | 23 52 67 | 3eqtr4d | |