Metamath Proof Explorer


Theorem dvco

Description: The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvco.f φF:X
dvco.x φXS
dvco.g φG:YX
dvco.y φYT
dvco.s φS
dvco.t φT
dvco.df φGCdomFS
dvco.dg φCdomGT
Assertion dvco φFGTC=FSGCGTC

Proof

Step Hyp Ref Expression
1 dvco.f φF:X
2 dvco.x φXS
3 dvco.g φG:YX
4 dvco.y φYT
5 dvco.s φS
6 dvco.t φT
7 dvco.df φGCdomFS
8 dvco.dg φCdomGT
9 dvfg TFGT:domFGT
10 ffun FGT:domFGTFunFGT
11 6 9 10 3syl φFunFGT
12 recnprss SS
13 5 12 syl φS
14 recnprss TT
15 6 14 syl φT
16 dvfg SFS:domFS
17 ffun FS:domFSFunFS
18 funfvbrb FunFSGCdomFSGCFSFSGC
19 5 16 17 18 4syl φGCdomFSGCFSFSGC
20 7 19 mpbid φGCFSFSGC
21 dvfg TGT:domGT
22 ffun GT:domGTFunGT
23 funfvbrb FunGTCdomGTCGTGTC
24 6 21 22 23 4syl φCdomGTCGTGTC
25 8 24 mpbid φCGTGTC
26 eqid TopOpenfld=TopOpenfld
27 1 2 3 4 13 15 20 25 26 dvcobr φCFGTFSGCGTC
28 funbrfv FunFGTCFGTFSGCGTCFGTC=FSGCGTC
29 11 27 28 sylc φFGTC=FSGCGTC