| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvco.f |  |-  ( ph -> F : X --> CC ) | 
						
							| 2 |  | dvco.x |  |-  ( ph -> X C_ S ) | 
						
							| 3 |  | dvco.g |  |-  ( ph -> G : Y --> X ) | 
						
							| 4 |  | dvco.y |  |-  ( ph -> Y C_ T ) | 
						
							| 5 |  | dvco.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 6 |  | dvco.t |  |-  ( ph -> T e. { RR , CC } ) | 
						
							| 7 |  | dvco.df |  |-  ( ph -> ( G ` C ) e. dom ( S _D F ) ) | 
						
							| 8 |  | dvco.dg |  |-  ( ph -> C e. dom ( T _D G ) ) | 
						
							| 9 |  | dvfg |  |-  ( T e. { RR , CC } -> ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC ) | 
						
							| 10 |  | ffun |  |-  ( ( T _D ( F o. G ) ) : dom ( T _D ( F o. G ) ) --> CC -> Fun ( T _D ( F o. G ) ) ) | 
						
							| 11 | 6 9 10 | 3syl |  |-  ( ph -> Fun ( T _D ( F o. G ) ) ) | 
						
							| 12 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 13 | 5 12 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 14 |  | recnprss |  |-  ( T e. { RR , CC } -> T C_ CC ) | 
						
							| 15 | 6 14 | syl |  |-  ( ph -> T C_ CC ) | 
						
							| 16 |  | dvfg |  |-  ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) | 
						
							| 17 |  | ffun |  |-  ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) | 
						
							| 18 |  | funfvbrb |  |-  ( Fun ( S _D F ) -> ( ( G ` C ) e. dom ( S _D F ) <-> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) ) | 
						
							| 19 | 5 16 17 18 | 4syl |  |-  ( ph -> ( ( G ` C ) e. dom ( S _D F ) <-> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) ) | 
						
							| 20 | 7 19 | mpbid |  |-  ( ph -> ( G ` C ) ( S _D F ) ( ( S _D F ) ` ( G ` C ) ) ) | 
						
							| 21 |  | dvfg |  |-  ( T e. { RR , CC } -> ( T _D G ) : dom ( T _D G ) --> CC ) | 
						
							| 22 |  | ffun |  |-  ( ( T _D G ) : dom ( T _D G ) --> CC -> Fun ( T _D G ) ) | 
						
							| 23 |  | funfvbrb |  |-  ( Fun ( T _D G ) -> ( C e. dom ( T _D G ) <-> C ( T _D G ) ( ( T _D G ) ` C ) ) ) | 
						
							| 24 | 6 21 22 23 | 4syl |  |-  ( ph -> ( C e. dom ( T _D G ) <-> C ( T _D G ) ( ( T _D G ) ` C ) ) ) | 
						
							| 25 | 8 24 | mpbid |  |-  ( ph -> C ( T _D G ) ( ( T _D G ) ` C ) ) | 
						
							| 26 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 27 | 1 2 3 4 13 15 20 25 26 | dvcobr |  |-  ( ph -> C ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) | 
						
							| 28 |  | funbrfv |  |-  ( Fun ( T _D ( F o. G ) ) -> ( C ( T _D ( F o. G ) ) ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) -> ( ( T _D ( F o. G ) ) ` C ) = ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) ) | 
						
							| 29 | 11 27 28 | sylc |  |-  ( ph -> ( ( T _D ( F o. G ) ) ` C ) = ( ( ( S _D F ) ` ( G ` C ) ) x. ( ( T _D G ) ` C ) ) ) |