| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptco.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvmptco.t |
⊢ ( 𝜑 → 𝑇 ∈ { ℝ , ℂ } ) |
| 3 |
|
dvmptco.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 4 |
|
dvmptco.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
| 5 |
|
dvmptco.c |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐶 ∈ ℂ ) |
| 6 |
|
dvmptco.d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ 𝑊 ) |
| 7 |
|
dvmptco.da |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 8 |
|
dvmptco.dc |
⊢ ( 𝜑 → ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) ) |
| 9 |
|
dvmptco.e |
⊢ ( 𝑦 = 𝐴 → 𝐶 = 𝐸 ) |
| 10 |
|
dvmptco.f |
⊢ ( 𝑦 = 𝐴 → 𝐷 = 𝐹 ) |
| 11 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) : 𝑌 ⟶ ℂ ) |
| 12 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 13 |
8
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = dom ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) ) |
| 14 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 𝐷 ∈ 𝑊 ) |
| 15 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ 𝑌 𝐷 ∈ 𝑊 → dom ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) = 𝑌 ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝑌 ↦ 𝐷 ) = 𝑌 ) |
| 17 |
13 16
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = 𝑌 ) |
| 18 |
7
|
dmeqd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 19 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 ) |
| 20 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 22 |
18 21
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = 𝑋 ) |
| 23 |
2 1 11 12 17 22
|
dvcof |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f · ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) ) |
| 24 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 25 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 26 |
3 24 25 9
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐸 ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 D ( ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐸 ) ) ) |
| 28 |
|
ovex |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ V |
| 29 |
28
|
dmex |
⊢ dom ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∈ V |
| 30 |
22 29
|
eqeltrrdi |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 31 |
2 5 6 8
|
dvmptcl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐷 ∈ ℂ ) |
| 32 |
8 31
|
fmpt3d |
⊢ ( 𝜑 → ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) : 𝑌 ⟶ ℂ ) |
| 33 |
|
fco |
⊢ ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) : 𝑌 ⟶ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) → ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ) |
| 34 |
32 12 33
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ) |
| 35 |
3 24 8 10
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) ) |
| 36 |
35
|
feq1d |
⊢ ( 𝜑 → ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) : 𝑋 ⟶ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 37 |
34 36
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 38 |
37
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ℂ ) |
| 39 |
30 38 4 35 7
|
offval2 |
⊢ ( 𝜑 → ( ( ( 𝑇 D ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ∘f · ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · 𝐵 ) ) ) |
| 40 |
23 27 39
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐸 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 · 𝐵 ) ) ) |