Metamath Proof Explorer


Theorem dvrecg

Description: Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvrecg.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
dvrecg.a ( 𝜑𝐴 ∈ ℂ )
dvrecg.b ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) )
dvrecg.c ( ( 𝜑𝑥𝑋 ) → 𝐶𝑉 )
dvrecg.db ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐵 ) ) = ( 𝑥𝑋𝐶 ) )
Assertion dvrecg ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) )

Proof

Step Hyp Ref Expression
1 dvrecg.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 dvrecg.a ( 𝜑𝐴 ∈ ℂ )
3 dvrecg.b ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) )
4 dvrecg.c ( ( 𝜑𝑥𝑋 ) → 𝐶𝑉 )
5 dvrecg.db ( 𝜑 → ( 𝑆 D ( 𝑥𝑋𝐵 ) ) = ( 𝑥𝑋𝐶 ) )
6 cnelprrecn ℂ ∈ { ℝ , ℂ }
7 6 a1i ( 𝜑 → ℂ ∈ { ℝ , ℂ } )
8 2 adantr ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ ℂ )
9 eldifi ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ )
10 9 adantl ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ )
11 eldifsni ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 )
12 11 adantl ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 )
13 8 10 12 divcld ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ )
14 10 sqcld ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) ∈ ℂ )
15 2z 2 ∈ ℤ
16 15 a1i ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 2 ∈ ℤ )
17 10 12 16 expne0d ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) ≠ 0 )
18 8 14 17 divcld ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ℂ )
19 18 negcld ( ( 𝜑𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ℂ )
20 dvrec ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) )
21 2 20 syl ( 𝜑 → ( ℂ D ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) )
22 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 / 𝑦 ) = ( 𝐴 / 𝐵 ) )
23 oveq1 ( 𝑦 = 𝐵 → ( 𝑦 ↑ 2 ) = ( 𝐵 ↑ 2 ) )
24 23 oveq2d ( 𝑦 = 𝐵 → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( 𝐴 / ( 𝐵 ↑ 2 ) ) )
25 24 negeqd ( 𝑦 = 𝐵 → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = - ( 𝐴 / ( 𝐵 ↑ 2 ) ) )
26 1 7 3 4 13 19 5 21 22 25 dvmptco ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥𝑋 ↦ ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) )
27 2 adantr ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ℂ )
28 eldifi ( 𝐵 ∈ ( ℂ ∖ { 0 } ) → 𝐵 ∈ ℂ )
29 3 28 syl ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ℂ )
30 29 sqcld ( ( 𝜑𝑥𝑋 ) → ( 𝐵 ↑ 2 ) ∈ ℂ )
31 eldifsn ( 𝐵 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) )
32 3 31 sylib ( ( 𝜑𝑥𝑋 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) )
33 32 simprd ( ( 𝜑𝑥𝑋 ) → 𝐵 ≠ 0 )
34 15 a1i ( ( 𝜑𝑥𝑋 ) → 2 ∈ ℤ )
35 29 33 34 expne0d ( ( 𝜑𝑥𝑋 ) → ( 𝐵 ↑ 2 ) ≠ 0 )
36 27 30 35 divcld ( ( 𝜑𝑥𝑋 ) → ( 𝐴 / ( 𝐵 ↑ 2 ) ) ∈ ℂ )
37 1 29 4 5 dvmptcl ( ( 𝜑𝑥𝑋 ) → 𝐶 ∈ ℂ )
38 36 37 mulneg1d ( ( 𝜑𝑥𝑋 ) → ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) )
39 27 37 30 35 div23d ( ( 𝜑𝑥𝑋 ) → ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) )
40 39 eqcomd ( ( 𝜑𝑥𝑋 ) → ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) )
41 40 negeqd ( ( 𝜑𝑥𝑋 ) → - ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) )
42 38 41 eqtrd ( ( 𝜑𝑥𝑋 ) → ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) )
43 42 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) = ( 𝑥𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) )
44 26 43 eqtrd ( 𝜑 → ( 𝑆 D ( 𝑥𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) )