Step |
Hyp |
Ref |
Expression |
1 |
|
dvfcn |
⊢ ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ |
2 |
|
ssidd |
⊢ ( 𝐴 ∈ ℂ → ℂ ⊆ ℂ ) |
3 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
4 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
5 |
4
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
6 |
3 5
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
7 |
6
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
8 |
|
difssd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
9 |
2 7 8
|
dvbss |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⊆ ( ℂ ∖ { 0 } ) ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) ) |
11 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
12 |
11
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
13 |
11
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
14 |
|
0cn |
⊢ 0 ∈ ℂ |
15 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
16 |
15
|
sncld |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ 0 ∈ ℂ ) → { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
17 |
13 14 16
|
mp2an |
⊢ { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
18 |
15
|
cldopn |
⊢ ( { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) |
20 |
|
isopn3i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) = ( ℂ ∖ { 0 } ) ) |
21 |
12 19 20
|
mp2an |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) = ( ℂ ∖ { 0 } ) |
22 |
10 21
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) ) |
23 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
25 |
24
|
sqvald |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) = ( 𝑦 · 𝑦 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( 𝐴 / ( 𝑦 · 𝑦 ) ) ) |
27 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
28 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) |
29 |
28
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
30 |
27 24 24 29 29
|
divdiv1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝐴 / 𝑦 ) / 𝑦 ) = ( 𝐴 / ( 𝑦 · 𝑦 ) ) ) |
31 |
26 30
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
32 |
31
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = - ( ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
33 |
27 24 29
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
34 |
33 24 29
|
divnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( ( 𝐴 / 𝑦 ) / 𝑦 ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
35 |
32 34
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
36 |
33
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / 𝑦 ) ∈ ℂ ) |
37 |
|
eqid |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
38 |
37
|
cdivcncf |
⊢ ( - ( 𝐴 / 𝑦 ) ∈ ℂ → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
39 |
36 38
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
40 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( - ( 𝐴 / 𝑦 ) / 𝑧 ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
41 |
39 10 40
|
cnmptlimc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) ) |
42 |
35 41
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) ) |
43 |
|
cncff |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
44 |
39 43
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
45 |
44
|
limcdif |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) = ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) limℂ 𝑦 ) ) |
46 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
48 |
47
|
eldifad |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ∈ ℂ ) |
49 |
23
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑦 ∈ ℂ ) |
50 |
48 49
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 − 𝑦 ) ∈ ℂ ) |
51 |
33
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
52 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) |
53 |
47 52
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ≠ 0 ) |
54 |
51 48 53
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) |
55 |
|
mulneg12 |
⊢ ( ( ( 𝑧 − 𝑦 ) ∈ ℂ ∧ ( ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
56 |
50 54 55
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
57 |
49 48 54
|
subdird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 − 𝑧 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) − ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) ) |
58 |
48 49
|
negsubdi2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( 𝑧 − 𝑦 ) = ( 𝑦 − 𝑧 ) ) |
59 |
58
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑦 − 𝑧 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
60 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑧 ) ) |
61 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) |
62 |
|
ovex |
⊢ ( 𝐴 / 𝑧 ) ∈ V |
63 |
60 61 62
|
fvmpt |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
64 |
47 63
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
65 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝐴 ∈ ℂ ) |
66 |
28
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑦 ≠ 0 ) |
67 |
65 49 66
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑦 · ( 𝐴 / 𝑦 ) ) = 𝐴 ) |
68 |
67
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 · ( 𝐴 / 𝑦 ) ) / 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
69 |
49 51 48 53
|
divassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 · ( 𝐴 / 𝑦 ) ) / 𝑧 ) = ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
70 |
64 68 69
|
3eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
71 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑦 ) ) |
72 |
|
ovex |
⊢ ( 𝐴 / 𝑦 ) ∈ V |
73 |
71 61 72
|
fvmpt |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
74 |
73
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
75 |
51 48 53
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( 𝐴 / 𝑦 ) ) |
76 |
74 75
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
77 |
70 76
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) − ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) ) |
78 |
57 59 77
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) ) |
79 |
51 48 53
|
divnegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( ( 𝐴 / 𝑦 ) / 𝑧 ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
80 |
79
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
81 |
56 78 80
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
82 |
81
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) = ( ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) / ( 𝑧 − 𝑦 ) ) ) |
83 |
51
|
negcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( 𝐴 / 𝑦 ) ∈ ℂ ) |
84 |
83 48 53
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) |
85 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) → 𝑧 ≠ 𝑦 ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ≠ 𝑦 ) |
87 |
48 49 86
|
subne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 − 𝑦 ) ≠ 0 ) |
88 |
84 50 87
|
divcan3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) / ( 𝑧 − 𝑦 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
89 |
82 88
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
90 |
89
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
91 |
|
difss |
⊢ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ⊆ ( ℂ ∖ { 0 } ) |
92 |
|
resmpt |
⊢ ( ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ⊆ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
93 |
91 92
|
ax-mp |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
94 |
90 93
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) ) |
95 |
94
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) = ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) limℂ 𝑦 ) ) |
96 |
45 95
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) = ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) |
97 |
42 96
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) |
98 |
11
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
99 |
98
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
100 |
|
eqid |
⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) |
101 |
|
ssidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ℂ ⊆ ℂ ) |
102 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
103 |
|
difssd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
104 |
99 11 100 101 102 103
|
eldv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ↔ ( 𝑦 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) ∧ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) ) ) |
105 |
22 97 104
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
106 |
|
vex |
⊢ 𝑦 ∈ V |
107 |
|
negex |
⊢ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ V |
108 |
106 107
|
breldm |
⊢ ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) → 𝑦 ∈ dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
109 |
105 108
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
110 |
9 109
|
eqelssd |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) = ( ℂ ∖ { 0 } ) ) |
111 |
110
|
feq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ ↔ ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) ) |
112 |
1 111
|
mpbii |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
113 |
112
|
ffnd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
114 |
|
negex |
⊢ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V |
115 |
114
|
rgenw |
⊢ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V |
116 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) |
117 |
116
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
118 |
115 117
|
mp1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
119 |
|
ffun |
⊢ ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ → Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
120 |
1 119
|
mp1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
121 |
|
funbrfv |
⊢ ( Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) → ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) ) |
122 |
120 105 121
|
sylc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
123 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
124 |
123
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 / ( 𝑥 ↑ 2 ) ) = ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
125 |
124
|
negeqd |
⊢ ( 𝑥 = 𝑦 → - ( 𝐴 / ( 𝑥 ↑ 2 ) ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
126 |
125 116 107
|
fvmpt |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
127 |
126
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
128 |
122 127
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) ) |
129 |
113 118 128
|
eqfnfvd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ) |