Step |
Hyp |
Ref |
Expression |
1 |
|
cdivcncf.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
3 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
5 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
6 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
7 |
4 5 6
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
8 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
9 |
7 4 8
|
cnmptc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
10 |
7
|
cnmptid |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) |
11 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) |
12 |
2 11
|
divcn |
⊢ / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) |
13 |
12
|
a1i |
⊢ ( 𝐴 ∈ ℂ → / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
14 |
7 9 10 13
|
cnmpt12f |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
15 |
|
ssid |
⊢ ℂ ⊆ ℂ |
16 |
3
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
17 |
2 11 16
|
cncfcn |
⊢ ( ( ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
18 |
5 15 17
|
mp2an |
⊢ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) |
19 |
14 1 18
|
3eltr4g |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |