Metamath Proof Explorer


Theorem negcncf

Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis negcncf.1 𝐹 = ( 𝑥𝐴 ↦ - 𝑥 )
Assertion negcncf ( 𝐴 ⊆ ℂ → 𝐹 ∈ ( 𝐴cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 negcncf.1 𝐹 = ( 𝑥𝐴 ↦ - 𝑥 )
2 ssel2 ( ( 𝐴 ⊆ ℂ ∧ 𝑥𝐴 ) → 𝑥 ∈ ℂ )
3 2 mulm1d ( ( 𝐴 ⊆ ℂ ∧ 𝑥𝐴 ) → ( - 1 · 𝑥 ) = - 𝑥 )
4 3 mpteq2dva ( 𝐴 ⊆ ℂ → ( 𝑥𝐴 ↦ ( - 1 · 𝑥 ) ) = ( 𝑥𝐴 ↦ - 𝑥 ) )
5 4 1 eqtr4di ( 𝐴 ⊆ ℂ → ( 𝑥𝐴 ↦ ( - 1 · 𝑥 ) ) = 𝐹 )
6 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
7 6 mulcn · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) )
8 7 a1i ( 𝐴 ⊆ ℂ → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) )
9 neg1cn - 1 ∈ ℂ
10 ssid ℂ ⊆ ℂ
11 cncfmptc ( ( - 1 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥𝐴 ↦ - 1 ) ∈ ( 𝐴cn→ ℂ ) )
12 9 10 11 mp3an13 ( 𝐴 ⊆ ℂ → ( 𝑥𝐴 ↦ - 1 ) ∈ ( 𝐴cn→ ℂ ) )
13 cncfmptid ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥𝐴𝑥 ) ∈ ( 𝐴cn→ ℂ ) )
14 10 13 mpan2 ( 𝐴 ⊆ ℂ → ( 𝑥𝐴𝑥 ) ∈ ( 𝐴cn→ ℂ ) )
15 6 8 12 14 cncfmpt2f ( 𝐴 ⊆ ℂ → ( 𝑥𝐴 ↦ ( - 1 · 𝑥 ) ) ∈ ( 𝐴cn→ ℂ ) )
16 5 15 eqeltrrd ( 𝐴 ⊆ ℂ → 𝐹 ∈ ( 𝐴cn→ ℂ ) )