Metamath Proof Explorer


Theorem negcncf

Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis negcncf.1 F=xAx
Assertion negcncf AF:Acn

Proof

Step Hyp Ref Expression
1 negcncf.1 F=xAx
2 ssel2 AxAx
3 2 mulm1d AxA-1x=x
4 3 mpteq2dva AxA-1x=xAx
5 4 1 eqtr4di AxA-1x=F
6 eqid TopOpenfld=TopOpenfld
7 6 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
8 7 a1i A×TopOpenfld×tTopOpenfldCnTopOpenfld
9 neg1cn 1
10 ssid
11 cncfmptc 1AxA1:Acn
12 9 10 11 mp3an13 AxA1:Acn
13 cncfmptid AxAx:Acn
14 10 13 mpan2 AxAx:Acn
15 6 8 12 14 cncfmpt2f AxA-1x:Acn
16 5 15 eqeltrrd AF:Acn