Metamath Proof Explorer


Theorem negfcncf

Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008) (Revised by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypothesis negfcncf.1 G = x A F x
Assertion negfcncf F : A cn G : A cn

Proof

Step Hyp Ref Expression
1 negfcncf.1 G = x A F x
2 cncff F : A cn F : A
3 2 ffvelrnda F : A cn x A F x
4 2 feqmptd F : A cn F = x A F x
5 eqidd F : A cn y y = y y
6 negeq y = F x y = F x
7 3 4 5 6 fmptco F : A cn y y F = x A F x
8 7 1 eqtr4di F : A cn y y F = G
9 id F : A cn F : A cn
10 ssid
11 eqid y y = y y
12 11 negcncf y y : cn
13 10 12 mp1i F : A cn y y : cn
14 9 13 cncfco F : A cn y y F : A cn
15 8 14 eqeltrrd F : A cn G : A cn