| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negcncf.1 |
|- F = ( x e. A |-> -u x ) |
| 2 |
|
neg1cn |
|- -u 1 e. CC |
| 3 |
|
ssel2 |
|- ( ( A C_ CC /\ x e. A ) -> x e. CC ) |
| 4 |
|
ovmpot |
|- ( ( -u 1 e. CC /\ x e. CC ) -> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) = ( -u 1 x. x ) ) |
| 5 |
4
|
eqcomd |
|- ( ( -u 1 e. CC /\ x e. CC ) -> ( -u 1 x. x ) = ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) |
| 6 |
2 3 5
|
sylancr |
|- ( ( A C_ CC /\ x e. A ) -> ( -u 1 x. x ) = ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) |
| 7 |
3
|
mulm1d |
|- ( ( A C_ CC /\ x e. A ) -> ( -u 1 x. x ) = -u x ) |
| 8 |
6 7
|
eqtr3d |
|- ( ( A C_ CC /\ x e. A ) -> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) = -u x ) |
| 9 |
8
|
mpteq2dva |
|- ( A C_ CC -> ( x e. A |-> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) = ( x e. A |-> -u x ) ) |
| 10 |
9 1
|
eqtr4di |
|- ( A C_ CC -> ( x e. A |-> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) = F ) |
| 11 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 12 |
11
|
mpomulcn |
|- ( a e. CC , b e. CC |-> ( a x. b ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 13 |
12
|
a1i |
|- ( A C_ CC -> ( a e. CC , b e. CC |-> ( a x. b ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 |
|
ssid |
|- CC C_ CC |
| 15 |
|
cncfmptc |
|- ( ( -u 1 e. CC /\ A C_ CC /\ CC C_ CC ) -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) |
| 16 |
2 14 15
|
mp3an13 |
|- ( A C_ CC -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) |
| 17 |
|
cncfmptid |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
| 18 |
14 17
|
mpan2 |
|- ( A C_ CC -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
| 19 |
11 13 16 18
|
cncfmpt2f |
|- ( A C_ CC -> ( x e. A |-> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) e. ( A -cn-> CC ) ) |
| 20 |
10 19
|
eqeltrrd |
|- ( A C_ CC -> F e. ( A -cn-> CC ) ) |