| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdivcncf.1 |
|- F = ( x e. ( CC \ { 0 } ) |-> ( A / x ) ) |
| 2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 3 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 |
3
|
a1i |
|- ( A e. CC -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 5 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
| 6 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) |
| 7 |
4 5 6
|
sylancl |
|- ( A e. CC -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) |
| 8 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 9 |
7 4 8
|
cnmptc |
|- ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 10 |
7
|
cnmptid |
|- ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) |
| 11 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) |
| 12 |
2 11
|
divcn |
|- / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) |
| 13 |
12
|
a1i |
|- ( A e. CC -> / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 |
7 9 10 13
|
cnmpt12f |
|- ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> ( A / x ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 15 |
|
ssid |
|- CC C_ CC |
| 16 |
3
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 17 |
2 11 16
|
cncfcn |
|- ( ( ( CC \ { 0 } ) C_ CC /\ CC C_ CC ) -> ( ( CC \ { 0 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 18 |
5 15 17
|
mp2an |
|- ( ( CC \ { 0 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) |
| 19 |
14 1 18
|
3eltr4g |
|- ( A e. CC -> F e. ( ( CC \ { 0 } ) -cn-> CC ) ) |