| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfcn |
|
| 2 |
|
ssidd |
|
| 3 |
|
eldifsn |
|
| 4 |
|
divcl |
|
| 5 |
4
|
3expb |
|
| 6 |
3 5
|
sylan2b |
|
| 7 |
6
|
fmpttd |
|
| 8 |
|
difssd |
|
| 9 |
2 7 8
|
dvbss |
|
| 10 |
|
simpr |
|
| 11 |
|
eqid |
|
| 12 |
11
|
cnfldtop |
|
| 13 |
|
cnn0opn |
|
| 14 |
|
isopn3i |
|
| 15 |
12 13 14
|
mp2an |
|
| 16 |
10 15
|
eleqtrrdi |
|
| 17 |
|
eldifi |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
sqvald |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
simpl |
|
| 22 |
|
eldifsni |
|
| 23 |
22
|
adantl |
|
| 24 |
21 18 18 23 23
|
divdiv1d |
|
| 25 |
20 24
|
eqtr4d |
|
| 26 |
25
|
negeqd |
|
| 27 |
21 18 23
|
divcld |
|
| 28 |
27 18 23
|
divnegd |
|
| 29 |
26 28
|
eqtrd |
|
| 30 |
27
|
negcld |
|
| 31 |
|
eqid |
|
| 32 |
31
|
cdivcncf |
|
| 33 |
30 32
|
syl |
|
| 34 |
|
oveq2 |
|
| 35 |
33 10 34
|
cnmptlimc |
|
| 36 |
29 35
|
eqeltrd |
|
| 37 |
|
cncff |
|
| 38 |
33 37
|
syl |
|
| 39 |
38
|
limcdif |
|
| 40 |
|
eldifi |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
eldifad |
|
| 43 |
17
|
ad2antlr |
|
| 44 |
42 43
|
subcld |
|
| 45 |
27
|
adantr |
|
| 46 |
|
eldifsni |
|
| 47 |
41 46
|
syl |
|
| 48 |
45 42 47
|
divcld |
|
| 49 |
|
mulneg12 |
|
| 50 |
44 48 49
|
syl2anc |
|
| 51 |
43 42 48
|
subdird |
|
| 52 |
42 43
|
negsubdi2d |
|
| 53 |
52
|
oveq1d |
|
| 54 |
|
oveq2 |
|
| 55 |
|
eqid |
|
| 56 |
|
ovex |
|
| 57 |
54 55 56
|
fvmpt |
|
| 58 |
41 57
|
syl |
|
| 59 |
|
simpll |
|
| 60 |
22
|
ad2antlr |
|
| 61 |
59 43 60
|
divcan2d |
|
| 62 |
61
|
oveq1d |
|
| 63 |
43 45 42 47
|
divassd |
|
| 64 |
58 62 63
|
3eqtr2d |
|
| 65 |
|
oveq2 |
|
| 66 |
|
ovex |
|
| 67 |
65 55 66
|
fvmpt |
|
| 68 |
67
|
ad2antlr |
|
| 69 |
45 42 47
|
divcan2d |
|
| 70 |
68 69
|
eqtr4d |
|
| 71 |
64 70
|
oveq12d |
|
| 72 |
51 53 71
|
3eqtr4d |
|
| 73 |
45 42 47
|
divnegd |
|
| 74 |
73
|
oveq2d |
|
| 75 |
50 72 74
|
3eqtr3d |
|
| 76 |
75
|
oveq1d |
|
| 77 |
45
|
negcld |
|
| 78 |
77 42 47
|
divcld |
|
| 79 |
|
eldifsni |
|
| 80 |
79
|
adantl |
|
| 81 |
42 43 80
|
subne0d |
|
| 82 |
78 44 81
|
divcan3d |
|
| 83 |
76 82
|
eqtrd |
|
| 84 |
83
|
mpteq2dva |
|
| 85 |
|
difss |
|
| 86 |
|
resmpt |
|
| 87 |
85 86
|
ax-mp |
|
| 88 |
84 87
|
eqtr4di |
|
| 89 |
88
|
oveq1d |
|
| 90 |
39 89
|
eqtr4d |
|
| 91 |
36 90
|
eleqtrd |
|
| 92 |
11
|
cnfldtopon |
|
| 93 |
92
|
toponrestid |
|
| 94 |
|
eqid |
|
| 95 |
|
ssidd |
|
| 96 |
7
|
adantr |
|
| 97 |
|
difssd |
|
| 98 |
93 11 94 95 96 97
|
eldv |
|
| 99 |
16 91 98
|
mpbir2and |
|
| 100 |
|
vex |
|
| 101 |
|
negex |
|
| 102 |
100 101
|
breldm |
|
| 103 |
99 102
|
syl |
|
| 104 |
9 103
|
eqelssd |
|
| 105 |
104
|
feq2d |
|
| 106 |
1 105
|
mpbii |
|
| 107 |
106
|
ffnd |
|
| 108 |
|
negex |
|
| 109 |
108
|
rgenw |
|
| 110 |
|
eqid |
|
| 111 |
110
|
fnmpt |
|
| 112 |
109 111
|
mp1i |
|
| 113 |
|
ffun |
|
| 114 |
1 113
|
mp1i |
|
| 115 |
|
funbrfv |
|
| 116 |
114 99 115
|
sylc |
|
| 117 |
|
oveq1 |
|
| 118 |
117
|
oveq2d |
|
| 119 |
118
|
negeqd |
|
| 120 |
119 110 101
|
fvmpt |
|
| 121 |
120
|
adantl |
|
| 122 |
116 121
|
eqtr4d |
|
| 123 |
107 112 122
|
eqfnfvd |
|