Metamath Proof Explorer


Theorem cnmptlimc

Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnmptlimc.f φxAX:AcnD
cnmptlimc.b φBA
cnmptlimc.1 x=BX=Y
Assertion cnmptlimc φYxAXlimB

Proof

Step Hyp Ref Expression
1 cnmptlimc.f φxAX:AcnD
2 cnmptlimc.b φBA
3 cnmptlimc.1 x=BX=Y
4 eqid xAX=xAX
5 3 eleq1d x=BXDYD
6 cncff xAX:AcnDxAX:AD
7 1 6 syl φxAX:AD
8 4 fmpt xAXDxAX:AD
9 7 8 sylibr φxAXD
10 5 9 2 rspcdva φYD
11 4 3 2 10 fvmptd3 φxAXB=Y
12 1 2 cnlimci φxAXBxAXlimB
13 11 12 eqeltrrd φYxAXlimB