Metamath Proof Explorer


Theorem limcdif

Description: It suffices to consider functions which are not defined at B to define the limit of a function. In particular, the value of the original function F at B does not affect the limit of F . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypothesis limccl.f φF:A
Assertion limcdif φFlimB=FABlimB

Proof

Step Hyp Ref Expression
1 limccl.f φF:A
2 1 fdmd φdomF=A
3 2 adantr φxFlimBdomF=A
4 limcrcl xFlimBF:domFdomFB
5 4 adantl φxFlimBF:domFdomFB
6 5 simp2d φxFlimBdomF
7 3 6 eqsstrrd φxFlimBA
8 5 simp3d φxFlimBB
9 7 8 jca φxFlimBAB
10 9 ex φxFlimBAB
11 undif1 ABB=AB
12 difss ABA
13 fssres F:AABAFAB:AB
14 1 12 13 sylancl φFAB:AB
15 14 fdmd φdomFAB=AB
16 15 adantr φxFABlimBdomFAB=AB
17 limcrcl xFABlimBFAB:domFABdomFABB
18 17 adantl φxFABlimBFAB:domFABdomFABB
19 18 simp2d φxFABlimBdomFAB
20 16 19 eqsstrrd φxFABlimBAB
21 18 simp3d φxFABlimBB
22 21 snssd φxFABlimBB
23 20 22 unssd φxFABlimBABB
24 11 23 eqsstrrid φxFABlimBAB
25 24 unssad φxFABlimBA
26 25 21 jca φxFABlimBAB
27 26 ex φxFABlimBAB
28 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
29 eqid TopOpenfld=TopOpenfld
30 eqid zABifz=BxFz=zABifz=BxFz
31 1 adantr φABF:A
32 simprl φABA
33 simprr φABB
34 28 29 30 31 32 33 ellimc φABxFlimBzABifz=BxFzTopOpenfld𝑡ABCnPTopOpenfldB
35 11 eqcomi AB=ABB
36 35 oveq2i TopOpenfld𝑡AB=TopOpenfld𝑡ABB
37 35 mpteq1i zABifz=BxFz=zABBifz=BxFz
38 elun zABBzABzB
39 velsn zBz=B
40 39 orbi2i zABzBzABz=B
41 pm5.61 zABz=B¬z=BzAB¬z=B
42 fvres zABFABz=Fz
43 42 adantr zAB¬z=BFABz=Fz
44 41 43 sylbi zABz=B¬z=BFABz=Fz
45 44 ifeq2da zABz=Bifz=BxFABz=ifz=BxFz
46 40 45 sylbi zABzBifz=BxFABz=ifz=BxFz
47 38 46 sylbi zABBifz=BxFABz=ifz=BxFz
48 47 mpteq2ia zABBifz=BxFABz=zABBifz=BxFz
49 37 48 eqtr4i zABifz=BxFz=zABBifz=BxFABz
50 14 adantr φABFAB:AB
51 32 ssdifssd φABAB
52 36 29 49 50 51 33 ellimc φABxFABlimBzABifz=BxFzTopOpenfld𝑡ABCnPTopOpenfldB
53 34 52 bitr4d φABxFlimBxFABlimB
54 53 ex φABxFlimBxFABlimB
55 10 27 54 pm5.21ndd φxFlimBxFABlimB
56 55 eqrdv φFlimB=FABlimB