Description: It suffices to consider functions which are not defined at B to define the limit of a function. In particular, the value of the original function F at B does not affect the limit of F . (Contributed by Mario Carneiro, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | limccl.f | |
|
Assertion | limcdif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limccl.f | |
|
2 | 1 | fdmd | |
3 | 2 | adantr | |
4 | limcrcl | |
|
5 | 4 | adantl | |
6 | 5 | simp2d | |
7 | 3 6 | eqsstrrd | |
8 | 5 | simp3d | |
9 | 7 8 | jca | |
10 | 9 | ex | |
11 | undif1 | |
|
12 | difss | |
|
13 | fssres | |
|
14 | 1 12 13 | sylancl | |
15 | 14 | fdmd | |
16 | 15 | adantr | |
17 | limcrcl | |
|
18 | 17 | adantl | |
19 | 18 | simp2d | |
20 | 16 19 | eqsstrrd | |
21 | 18 | simp3d | |
22 | 21 | snssd | |
23 | 20 22 | unssd | |
24 | 11 23 | eqsstrrid | |
25 | 24 | unssad | |
26 | 25 21 | jca | |
27 | 26 | ex | |
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 1 | adantr | |
32 | simprl | |
|
33 | simprr | |
|
34 | 28 29 30 31 32 33 | ellimc | |
35 | 11 | eqcomi | |
36 | 35 | oveq2i | |
37 | 35 | mpteq1i | |
38 | elun | |
|
39 | velsn | |
|
40 | 39 | orbi2i | |
41 | pm5.61 | |
|
42 | fvres | |
|
43 | 42 | adantr | |
44 | 41 43 | sylbi | |
45 | 44 | ifeq2da | |
46 | 40 45 | sylbi | |
47 | 38 46 | sylbi | |
48 | 47 | mpteq2ia | |
49 | 37 48 | eqtr4i | |
50 | 14 | adantr | |
51 | 32 | ssdifssd | |
52 | 36 29 49 50 51 33 | ellimc | |
53 | 34 52 | bitr4d | |
54 | 53 | ex | |
55 | 10 27 54 | pm5.21ndd | |
56 | 55 | eqrdv | |