Metamath Proof Explorer


Theorem ellimc2

Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limccl.f φ F : A
limccl.a φ A
limccl.b φ B
ellimc2.k K = TopOpen fld
Assertion ellimc2 φ C F lim B C u K C u w K B w F w A B u

Proof

Step Hyp Ref Expression
1 limccl.f φ F : A
2 limccl.a φ A
3 limccl.b φ B
4 ellimc2.k K = TopOpen fld
5 limccl F lim B
6 5 sseli C F lim B C
7 6 pm4.71ri C F lim B C C F lim B
8 eqid K 𝑡 A B = K 𝑡 A B
9 eqid z A B if z = B C F z = z A B if z = B C F z
10 8 4 9 1 2 3 ellimc φ C F lim B z A B if z = B C F z K 𝑡 A B CnP K B
11 10 adantr φ C C F lim B z A B if z = B C F z K 𝑡 A B CnP K B
12 4 cnfldtopon K TopOn
13 3 snssd φ B
14 2 13 unssd φ A B
15 resttopon K TopOn A B K 𝑡 A B TopOn A B
16 12 14 15 sylancr φ K 𝑡 A B TopOn A B
17 16 adantr φ C K 𝑡 A B TopOn A B
18 12 a1i φ C K TopOn
19 ssun2 B A B
20 snssg B B A B B A B
21 3 20 syl φ B A B B A B
22 19 21 mpbiri φ B A B
23 22 adantr φ C B A B
24 elun z A B z A z B
25 velsn z B z = B
26 25 orbi2i z A z B z A z = B
27 24 26 bitri z A B z A z = B
28 simpllr φ C z A z = B z = B C
29 pm5.61 z A z = B ¬ z = B z A ¬ z = B
30 1 ffvelrnda φ z A F z
31 30 ad2ant2r φ C z A ¬ z = B F z
32 29 31 sylan2b φ C z A z = B ¬ z = B F z
33 32 anassrs φ C z A z = B ¬ z = B F z
34 28 33 ifclda φ C z A z = B if z = B C F z
35 27 34 sylan2b φ C z A B if z = B C F z
36 35 fmpttd φ C z A B if z = B C F z : A B
37 iscnp K 𝑡 A B TopOn A B K TopOn B A B z A B if z = B C F z K 𝑡 A B CnP K B z A B if z = B C F z : A B u K z A B if z = B C F z B u v K 𝑡 A B B v z A B if z = B C F z v u
38 37 baibd K 𝑡 A B TopOn A B K TopOn B A B z A B if z = B C F z : A B z A B if z = B C F z K 𝑡 A B CnP K B u K z A B if z = B C F z B u v K 𝑡 A B B v z A B if z = B C F z v u
39 17 18 23 36 38 syl31anc φ C z A B if z = B C F z K 𝑡 A B CnP K B u K z A B if z = B C F z B u v K 𝑡 A B B v z A B if z = B C F z v u
40 iftrue z = B if z = B C F z = C
41 40 9 fvmptg B A B C z A B if z = B C F z B = C
42 22 41 sylan φ C z A B if z = B C F z B = C
43 42 eleq1d φ C z A B if z = B C F z B u C u
44 43 imbi1d φ C z A B if z = B C F z B u v K 𝑡 A B B v z A B if z = B C F z v u C u v K 𝑡 A B B v z A B if z = B C F z v u
45 44 adantr φ C u K z A B if z = B C F z B u v K 𝑡 A B B v z A B if z = B C F z v u C u v K 𝑡 A B B v z A B if z = B C F z v u
46 4 cnfldtop K Top
47 cnex V
48 47 ssex A B A B V
49 14 48 syl φ A B V
50 49 ad2antrr φ C u K C u A B V
51 restval K Top A B V K 𝑡 A B = ran w K w A B
52 46 50 51 sylancr φ C u K C u K 𝑡 A B = ran w K w A B
53 52 rexeqdv φ C u K C u v K 𝑡 A B B v z A B if z = B C F z v u v ran w K w A B B v z A B if z = B C F z v u
54 vex w V
55 54 inex1 w A B V
56 55 rgenw w K w A B V
57 eqid w K w A B = w K w A B
58 eleq2 v = w A B B v B w A B
59 imaeq2 v = w A B z A B if z = B C F z v = z A B if z = B C F z w A B
60 59 sseq1d v = w A B z A B if z = B C F z v u z A B if z = B C F z w A B u
61 58 60 anbi12d v = w A B B v z A B if z = B C F z v u B w A B z A B if z = B C F z w A B u
62 57 61 rexrnmptw w K w A B V v ran w K w A B B v z A B if z = B C F z v u w K B w A B z A B if z = B C F z w A B u
63 56 62 mp1i φ C u K C u v ran w K w A B B v z A B if z = B C F z v u w K B w A B z A B if z = B C F z w A B u
64 22 ad3antrrr φ C u K C u w K B A B
65 elin B w A B B w B A B
66 65 rbaib B A B B w A B B w
67 64 66 syl φ C u K C u w K B w A B B w
68 simpllr φ C u K C u w K C
69 fvex F z V
70 ifexg C F z V if z = B C F z V
71 68 69 70 sylancl φ C u K C u w K if z = B C F z V
72 71 ralrimivw φ C u K C u w K z w A B if z = B C F z V
73 eqid z w A B if z = B C F z = z w A B if z = B C F z
74 73 fnmpt z w A B if z = B C F z V z w A B if z = B C F z Fn w A B
75 73 fmpt z w A B if z = B C F z u z w A B if z = B C F z : w A B u
76 df-f z w A B if z = B C F z : w A B u z w A B if z = B C F z Fn w A B ran z w A B if z = B C F z u
77 75 76 bitri z w A B if z = B C F z u z w A B if z = B C F z Fn w A B ran z w A B if z = B C F z u
78 77 baib z w A B if z = B C F z Fn w A B z w A B if z = B C F z u ran z w A B if z = B C F z u
79 72 74 78 3syl φ C u K C u w K z w A B if z = B C F z u ran z w A B if z = B C F z u
80 simplrr φ C u K C u w K C u
81 elinel2 z w B z B
82 25 40 sylbi z B if z = B C F z = C
83 82 eleq1d z B if z = B C F z u C u
84 81 83 syl z w B if z = B C F z u C u
85 80 84 syl5ibrcom φ C u K C u w K z w B if z = B C F z u
86 85 ralrimiv φ C u K C u w K z w B if z = B C F z u
87 undif1 A B B = A B
88 87 ineq2i w A B B = w A B
89 indi w A B B = w A B w B
90 88 89 eqtr3i w A B = w A B w B
91 90 raleqi z w A B if z = B C F z u z w A B w B if z = B C F z u
92 ralunb z w A B w B if z = B C F z u z w A B if z = B C F z u z w B if z = B C F z u
93 91 92 bitri z w A B if z = B C F z u z w A B if z = B C F z u z w B if z = B C F z u
94 93 rbaib z w B if z = B C F z u z w A B if z = B C F z u z w A B if z = B C F z u
95 86 94 syl φ C u K C u w K z w A B if z = B C F z u z w A B if z = B C F z u
96 79 95 bitr3d φ C u K C u w K ran z w A B if z = B C F z u z w A B if z = B C F z u
97 elinel2 z w A B z A B
98 eldifsni z A B z B
99 ifnefalse z B if z = B C F z = F z
100 98 99 syl z A B if z = B C F z = F z
101 100 eleq1d z A B if z = B C F z u F z u
102 97 101 syl z w A B if z = B C F z u F z u
103 102 ralbiia z w A B if z = B C F z u z w A B F z u
104 96 103 bitrdi φ C u K C u w K ran z w A B if z = B C F z u z w A B F z u
105 df-ima z A B if z = B C F z w A B = ran z A B if z = B C F z w A B
106 inss2 w A B A B
107 resmpt w A B A B z A B if z = B C F z w A B = z w A B if z = B C F z
108 106 107 mp1i φ C u K C u w K z A B if z = B C F z w A B = z w A B if z = B C F z
109 108 rneqd φ C u K C u w K ran z A B if z = B C F z w A B = ran z w A B if z = B C F z
110 105 109 eqtrid φ C u K C u w K z A B if z = B C F z w A B = ran z w A B if z = B C F z
111 110 sseq1d φ C u K C u w K z A B if z = B C F z w A B u ran z w A B if z = B C F z u
112 1 ad3antrrr φ C u K C u w K F : A
113 112 ffund φ C u K C u w K Fun F
114 inss2 w A B A B
115 difss A B A
116 114 115 sstri w A B A
117 112 fdmd φ C u K C u w K dom F = A
118 116 117 sseqtrrid φ C u K C u w K w A B dom F
119 funimass4 Fun F w A B dom F F w A B u z w A B F z u
120 113 118 119 syl2anc φ C u K C u w K F w A B u z w A B F z u
121 104 111 120 3bitr4d φ C u K C u w K z A B if z = B C F z w A B u F w A B u
122 67 121 anbi12d φ C u K C u w K B w A B z A B if z = B C F z w A B u B w F w A B u
123 122 rexbidva φ C u K C u w K B w A B z A B if z = B C F z w A B u w K B w F w A B u
124 53 63 123 3bitrd φ C u K C u v K 𝑡 A B B v z A B if z = B C F z v u w K B w F w A B u
125 124 anassrs φ C u K C u v K 𝑡 A B B v z A B if z = B C F z v u w K B w F w A B u
126 125 pm5.74da φ C u K C u v K 𝑡 A B B v z A B if z = B C F z v u C u w K B w F w A B u
127 45 126 bitrd φ C u K z A B if z = B C F z B u v K 𝑡 A B B v z A B if z = B C F z v u C u w K B w F w A B u
128 127 ralbidva φ C u K z A B if z = B C F z B u v K 𝑡 A B B v z A B if z = B C F z v u u K C u w K B w F w A B u
129 11 39 128 3bitrd φ C C F lim B u K C u w K B w F w A B u
130 129 pm5.32da φ C C F lim B C u K C u w K B w F w A B u
131 7 130 syl5bb φ C F lim B C u K C u w K B w F w A B u