Metamath Proof Explorer


Theorem limccl

Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Assertion limccl FlimB

Proof

Step Hyp Ref Expression
1 limcrcl xFlimBF:domFdomFB
2 eqid TopOpenfld𝑡domFB=TopOpenfld𝑡domFB
3 eqid TopOpenfld=TopOpenfld
4 2 3 limcfval F:domFdomFBFlimB=y|zdomFBifz=ByFzTopOpenfld𝑡domFBCnPTopOpenfldBFlimB
5 1 4 syl xFlimBFlimB=y|zdomFBifz=ByFzTopOpenfld𝑡domFBCnPTopOpenfldBFlimB
6 5 simprd xFlimBFlimB
7 id xFlimBxFlimB
8 6 7 sseldd xFlimBx
9 8 ssriv FlimB