Step |
Hyp |
Ref |
Expression |
1 |
|
limccl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limccl.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
limccl.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
4 |
|
ellimc2.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
5 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
6 |
5
|
sseli |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐶 ∈ ℂ ) |
7 |
6
|
pm4.71ri |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
8 |
|
eqid |
⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
9 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) |
10 |
8 4 9 1 2 3
|
ellimc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
12 |
4
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
13 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ℂ ) |
14 |
2 13
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
15 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
16 |
12 14 15
|
sylancr |
⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
18 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
19 |
|
ssun2 |
⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) |
20 |
|
snssg |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
21 |
3 20
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
22 |
19 21
|
mpbiri |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
24 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) |
25 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) |
26 |
25
|
orbi2i |
⊢ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
27 |
24 26
|
bitri |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) |
28 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) ∧ 𝑧 = 𝐵 ) → 𝐶 ∈ ℂ ) |
29 |
|
pm5.61 |
⊢ ( ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) |
30 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
31 |
30
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
32 |
29 31
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
33 |
32
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) ∧ ¬ 𝑧 = 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
34 |
28 33
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵 ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
35 |
27 34
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
37 |
|
iscnp |
⊢ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
38 |
37
|
baibd |
⊢ ( ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
39 |
17 18 23 36 38
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
40 |
|
iftrue |
⊢ ( 𝑧 = 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) |
41 |
40 9
|
fvmptg |
⊢ ( ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
42 |
22 41
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) = 𝐶 ) |
43 |
42
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
44 |
43
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) ) |
46 |
4
|
cnfldtop |
⊢ 𝐾 ∈ Top |
47 |
|
cnex |
⊢ ℂ ∈ V |
48 |
47
|
ssex |
⊢ ( ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
49 |
14 48
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
51 |
|
restval |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∪ { 𝐵 } ) ∈ V ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
52 |
46 50 51
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
53 |
52
|
rexeqdv |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ) |
54 |
|
vex |
⊢ 𝑤 ∈ V |
55 |
54
|
inex1 |
⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V |
56 |
55
|
rgenw |
⊢ ∀ 𝑤 ∈ 𝐾 ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V |
57 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) |
58 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐵 ∈ 𝑣 ↔ 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
59 |
|
imaeq2 |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) = ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ) |
60 |
59
|
sseq1d |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
61 |
58 60
|
anbi12d |
⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
62 |
57 61
|
rexrnmptw |
⊢ ( ∀ 𝑤 ∈ 𝐾 ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∈ V → ( ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
63 |
56 62
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ran ( 𝑤 ∈ 𝐾 ↦ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
64 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
65 |
|
elin |
⊢ ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ ( 𝐵 ∈ 𝑤 ∧ 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ) |
66 |
65
|
rbaib |
⊢ ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ 𝐵 ∈ 𝑤 ) ) |
67 |
64 66
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↔ 𝐵 ∈ 𝑤 ) ) |
68 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐶 ∈ ℂ ) |
69 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
70 |
|
ifexg |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) ∈ V ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
71 |
68 69 70
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
72 |
71
|
ralrimivw |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
73 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) |
74 |
73
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ V → ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) |
75 |
73
|
fmpt |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝑢 ) |
76 |
|
df-f |
⊢ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⟶ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
77 |
75 76
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
78 |
77
|
baib |
⊢ ( ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) Fn ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
79 |
72 74 78
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
80 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐶 ∈ 𝑢 ) |
81 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → 𝑧 ∈ { 𝐵 } ) |
82 |
25 40
|
sylbi |
⊢ ( 𝑧 ∈ { 𝐵 } → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) |
83 |
82
|
eleq1d |
⊢ ( 𝑧 ∈ { 𝐵 } → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
84 |
81 83
|
syl |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ 𝐶 ∈ 𝑢 ) ) |
85 |
80 84
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
86 |
85
|
ralrimiv |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) |
87 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) |
88 |
87
|
ineq2i |
⊢ ( 𝑤 ∩ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) |
89 |
|
indi |
⊢ ( 𝑤 ∩ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) |
90 |
88 89
|
eqtr3i |
⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) |
91 |
90
|
raleqi |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) |
92 |
|
ralunb |
⊢ ( ∀ 𝑧 ∈ ( ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ∪ ( 𝑤 ∩ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ∧ ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
93 |
91 92
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ∧ ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
94 |
93
|
rbaib |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
95 |
86 94
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
96 |
79 95
|
bitr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ) ) |
97 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) → 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) |
98 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → 𝑧 ≠ 𝐵 ) |
99 |
|
ifnefalse |
⊢ ( 𝑧 ≠ 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
100 |
98 99
|
syl |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
101 |
100
|
eleq1d |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
102 |
97 101
|
syl |
⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
103 |
102
|
ralbiia |
⊢ ( ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) |
104 |
96 103
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
105 |
|
df-ima |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) |
106 |
|
inss2 |
⊢ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⊆ ( 𝐴 ∪ { 𝐵 } ) |
107 |
|
resmpt |
⊢ ( ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ⊆ ( 𝐴 ∪ { 𝐵 } ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
108 |
106 107
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
109 |
108
|
rneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ran ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
110 |
105 109
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) = ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
111 |
110
|
sseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ran ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ⊆ 𝑢 ) ) |
112 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
113 |
112
|
ffund |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → Fun 𝐹 ) |
114 |
|
inss2 |
⊢ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ ( 𝐴 ∖ { 𝐵 } ) |
115 |
|
difss |
⊢ ( 𝐴 ∖ { 𝐵 } ) ⊆ 𝐴 |
116 |
114 115
|
sstri |
⊢ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ 𝐴 |
117 |
112
|
fdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → dom 𝐹 = 𝐴 ) |
118 |
116 117
|
sseqtrrid |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ dom 𝐹 ) |
119 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
120 |
113 118 119
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ∀ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
121 |
104 111 120
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
122 |
67 121
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) ∧ 𝑤 ∈ 𝐾 ) → ( ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
123 |
122
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ ( 𝑤 ∩ ( 𝐴 ∪ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
124 |
53 63 123
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ ( 𝑢 ∈ 𝐾 ∧ 𝐶 ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
125 |
124
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) ∧ 𝐶 ∈ 𝑢 ) → ( ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
126 |
125
|
pm5.74da |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝐶 ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
127 |
45 126
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) ∧ 𝑢 ∈ 𝐾 ) → ( ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
128 |
127
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑢 ∈ 𝐾 ( ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) ‘ 𝐵 ) ∈ 𝑢 → ∃ 𝑣 ∈ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) “ 𝑣 ) ⊆ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
129 |
11 39 128
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
130 |
129
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
131 |
7 130
|
syl5bb |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝐶 ∈ 𝑢 → ∃ 𝑤 ∈ 𝐾 ( 𝐵 ∈ 𝑤 ∧ ( 𝐹 “ ( 𝑤 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |