Metamath Proof Explorer


Theorem ef2kpi

Description: If K is an integer, then the exponential of 2 Kpi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion ef2kpi K e i 2 π K = 1

Proof

Step Hyp Ref Expression
1 ax-icn i
2 2cn 2
3 picn π
4 2 3 mulcli 2 π
5 1 4 mulcli i 2 π
6 zcn K K
7 mulcom i 2 π K i 2 π K = K i 2 π
8 5 6 7 sylancr K i 2 π K = K i 2 π
9 8 fveq2d K e i 2 π K = e K i 2 π
10 efexp i 2 π K e K i 2 π = e i 2 π K
11 5 10 mpan K e K i 2 π = e i 2 π K
12 ef2pi e i 2 π = 1
13 12 oveq1i e i 2 π K = 1 K
14 1exp K 1 K = 1
15 13 14 eqtrid K e i 2 π K = 1
16 9 11 15 3eqtrd K e i 2 π K = 1