| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
2cn |
|- 2 e. CC |
| 3 |
|
picn |
|- _pi e. CC |
| 4 |
2 3
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 5 |
1 4
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
| 6 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 7 |
|
mulcom |
|- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. CC ) -> ( ( _i x. ( 2 x. _pi ) ) x. K ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 8 |
5 6 7
|
sylancr |
|- ( K e. ZZ -> ( ( _i x. ( 2 x. _pi ) ) x. K ) = ( K x. ( _i x. ( 2 x. _pi ) ) ) ) |
| 9 |
8
|
fveq2d |
|- ( K e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) = ( exp ` ( K x. ( _i x. ( 2 x. _pi ) ) ) ) ) |
| 10 |
|
efexp |
|- ( ( ( _i x. ( 2 x. _pi ) ) e. CC /\ K e. ZZ ) -> ( exp ` ( K x. ( _i x. ( 2 x. _pi ) ) ) ) = ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) ) |
| 11 |
5 10
|
mpan |
|- ( K e. ZZ -> ( exp ` ( K x. ( _i x. ( 2 x. _pi ) ) ) ) = ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) ) |
| 12 |
|
ef2pi |
|- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = 1 |
| 13 |
12
|
oveq1i |
|- ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) = ( 1 ^ K ) |
| 14 |
|
1exp |
|- ( K e. ZZ -> ( 1 ^ K ) = 1 ) |
| 15 |
13 14
|
eqtrid |
|- ( K e. ZZ -> ( ( exp ` ( _i x. ( 2 x. _pi ) ) ) ^ K ) = 1 ) |
| 16 |
9 11 15
|
3eqtrd |
|- ( K e. ZZ -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. K ) ) = 1 ) |