Metamath Proof Explorer


Theorem ef2pi

Description: The exponential of 2pi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion ef2pi ei2π=1

Proof

Step Hyp Ref Expression
1 2cn 2
2 picn π
3 1 2 mulcli 2π
4 efival 2πei2π=cos2π+isin2π
5 3 4 ax-mp ei2π=cos2π+isin2π
6 cos2pi cos2π=1
7 sin2pi sin2π=0
8 7 oveq2i isin2π=i0
9 it0e0 i0=0
10 8 9 eqtri isin2π=0
11 6 10 oveq12i cos2π+isin2π=1+0
12 1p0e1 1+0=1
13 11 12 eqtri cos2π+isin2π=1
14 5 13 eqtri ei2π=1