Metamath Proof Explorer


Theorem ioovolcl

Description: An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion ioovolcl ABvolAB

Proof

Step Hyp Ref Expression
1 ioombl ABdomvol
2 mblvol ABdomvolvolAB=vol*AB
3 1 2 mp1i ABvolAB=vol*AB
4 ltle BAB<ABA
5 4 ancoms ABB<ABA
6 5 imdistani ABB<AABBA
7 rexr AA*
8 rexr BB*
9 ioo0 A*B*AB=BA
10 7 8 9 syl2an ABAB=BA
11 10 biimpar ABBAAB=
12 fveq2 AB=vol*AB=vol*
13 ovol0 vol*=0
14 12 13 eqtrdi AB=vol*AB=0
15 0re 0
16 14 15 eqeltrdi AB=vol*AB
17 6 11 16 3syl ABB<Avol*AB
18 ovolioo ABABvol*AB=BA
19 18 3expa ABABvol*AB=BA
20 resubcl BABA
21 20 ancoms ABBA
22 21 adantr ABABBA
23 19 22 eqeltrd ABABvol*AB
24 simpr ABB
25 simpl ABA
26 17 23 24 25 ltlecasei ABvol*AB
27 3 26 eqeltrd ABvolAB