| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
| 2 |
|
mblvol |
|- ( ( A (,) B ) e. dom vol -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) |
| 3 |
1 2
|
mp1i |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) |
| 4 |
|
ltle |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A -> B <_ A ) ) |
| 5 |
4
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A -> B <_ A ) ) |
| 6 |
5
|
imdistani |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( A e. RR /\ B e. RR ) /\ B <_ A ) ) |
| 7 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 8 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 9 |
|
ioo0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 11 |
10
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( A (,) B ) = (/) ) |
| 12 |
|
fveq2 |
|- ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) = ( vol* ` (/) ) ) |
| 13 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
| 14 |
12 13
|
eqtrdi |
|- ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) = 0 ) |
| 15 |
|
0re |
|- 0 e. RR |
| 16 |
14 15
|
eqeltrdi |
|- ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 17 |
6 11 16
|
3syl |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 18 |
|
ovolioo |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) |
| 19 |
18
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) |
| 20 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
| 21 |
20
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 22 |
21
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B - A ) e. RR ) |
| 23 |
19 22
|
eqeltrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 24 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 25 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 26 |
17 23 24 25
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 27 |
3 26
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR ) |