| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| 2 |
|
mblvol |
⊢ ( ( 𝐴 (,) 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 3 |
1 2
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 4 |
|
ltle |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 → 𝐵 ≤ 𝐴 ) ) |
| 5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → 𝐵 ≤ 𝐴 ) ) |
| 6 |
5
|
imdistani |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) ) |
| 7 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 8 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
| 9 |
|
ioo0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| 11 |
10
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 12 |
|
fveq2 |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ∅ ) ) |
| 13 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 14 |
12 13
|
eqtrdi |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = 0 ) |
| 15 |
|
0re |
⊢ 0 ∈ ℝ |
| 16 |
14 15
|
eqeltrdi |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 17 |
6 11 16
|
3syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 18 |
|
ovolioo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 19 |
18
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 20 |
|
resubcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 21 |
20
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 23 |
19 22
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 24 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 25 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 26 |
17 23 24 25
|
ltlecasei |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 27 |
3 26
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |