Metamath Proof Explorer


Theorem ftc2re

Description: The Fundamental Theorem of Calculus, part two, for functions continuous on D . (Contributed by Thierry Arnoux, 1-Dec-2021)

Ref Expression
Hypotheses ftc2re.e E=CD
ftc2re.a φAE
ftc2re.b φBE
ftc2re.le φAB
ftc2re.f φF:E
ftc2re.1 φF:Ecn
Assertion ftc2re φABFtdt=FBFA

Proof

Step Hyp Ref Expression
1 ftc2re.e E=CD
2 ftc2re.a φAE
3 ftc2re.b φBE
4 ftc2re.le φAB
5 ftc2re.f φF:E
6 ftc2re.1 φF:Ecn
7 ioossre CD
8 1 7 eqsstri E
9 8 a1i φE
10 9 2 sseldd φA
11 9 3 sseldd φB
12 ax-resscn
13 12 a1i φ
14 iccssre ABAB
15 10 11 14 syl2anc φAB
16 eqid TopOpenfld=TopOpenfld
17 16 tgioo2 topGenran.=TopOpenfld𝑡
18 16 17 dvres F:EEABDFAB=FinttopGenran.AB
19 13 5 9 15 18 syl22anc φDFAB=FinttopGenran.AB
20 iccntr ABinttopGenran.AB=AB
21 10 11 20 syl2anc φinttopGenran.AB=AB
22 21 reseq2d φFinttopGenran.AB=FAB
23 19 22 eqtrd φDFAB=FAB
24 ioossicc ABAB
25 24 a1i φABAB
26 1 2 3 fct2relem φABE
27 25 26 sstrd φABE
28 rescncf ABEF:EcnFAB:ABcn
29 27 6 28 sylc φFAB:ABcn
30 23 29 eqeltrd φFAB:ABcn
31 ioombl ABdomvol
32 31 a1i φABdomvol
33 cnmbf ABdomvolFAB:ABcnFABMblFn
34 32 29 33 syl2anc φFABMblFn
35 dmres domFAB=ABdomF
36 35 fveq2i voldomFAB=volABdomF
37 cncff F:EcnF:E
38 6 37 syl φF:E
39 38 fdmd φdomF=E
40 39 ineq2d φABdomF=ABE
41 df-ss ABEABE=AB
42 27 41 sylib φABE=AB
43 40 42 eqtrd φABdomF=AB
44 43 fveq2d φvolABdomF=volAB
45 volioo ABABvolAB=BA
46 10 11 4 45 syl3anc φvolAB=BA
47 11 10 resubcld φBA
48 46 47 eqeltrd φvolAB
49 44 48 eqeltrd φvolABdomF
50 36 49 eqeltrid φvoldomFAB
51 rescncf ABEF:EcnFAB:ABcn
52 26 51 syl φF:EcnFAB:ABcn
53 6 52 mpd φFAB:ABcn
54 cniccbdd ABFAB:ABcnxyABFAByx
55 10 11 53 54 syl3anc φxyABFAByx
56 35 43 eqtrid φdomFAB=AB
57 56 25 eqsstrd φdomFABAB
58 ssralv domFABAByABFAByxydomFABFAByx
59 57 58 syl φyABFAByxydomFABFAByx
60 59 adantr φxyABFAByxydomFABFAByx
61 57 adantr φxdomFABAB
62 61 sselda φxydomFAByAB
63 fvres yABFABy=Fy
64 62 63 syl φxydomFABFABy=Fy
65 simpr φxydomFABydomFAB
66 56 ad2antrr φxydomFABdomFAB=AB
67 65 66 eleqtrd φxydomFAByAB
68 fvres yABFABy=Fy
69 67 68 syl φxydomFABFABy=Fy
70 64 69 eqtr4d φxydomFABFABy=FABy
71 70 fveq2d φxydomFABFABy=FABy
72 71 breq1d φxydomFABFAByxFAByx
73 72 biimpd φxydomFABFAByxFAByx
74 73 ralimdva φxydomFABFAByxydomFABFAByx
75 60 74 syld φxyABFAByxydomFABFAByx
76 75 reximdva φxyABFAByxxydomFABFAByx
77 55 76 mpd φxydomFABFAByx
78 bddibl FABMblFnvoldomFABxydomFABFAByxFAB𝐿1
79 34 50 77 78 syl3anc φFAB𝐿1
80 23 79 eqeltrd φDFAB𝐿1
81 dvcn F:EEdomF=EF:Ecn
82 13 5 9 39 81 syl31anc φF:Ecn
83 rescncf ABEF:EcnFAB:ABcn
84 26 83 syl φF:EcnFAB:ABcn
85 82 84 mpd φFAB:ABcn
86 10 11 4 30 80 85 ftc2 φABFABtdt=FABBFABA
87 23 fveq1d φFABt=FABt
88 fvres tABFABt=Ft
89 87 88 sylan9eq φtABFABt=Ft
90 89 ralrimiva φtABFABt=Ft
91 itgeq2 tABFABt=FtABFABtdt=ABFtdt
92 90 91 syl φABFABtdt=ABFtdt
93 10 rexrd φA*
94 11 rexrd φB*
95 ubicc2 A*B*ABBAB
96 93 94 4 95 syl3anc φBAB
97 96 fvresd φFABB=FB
98 lbicc2 A*B*ABAAB
99 93 94 4 98 syl3anc φAAB
100 99 fvresd φFABA=FA
101 97 100 oveq12d φFABBFABA=FBFA
102 86 92 101 3eqtr3d φABFtdt=FBFA