Metamath Proof Explorer


Theorem fct2relem

Description: Lemma for ftc2re . (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses ftc2re.e E=CD
ftc2re.a φAE
ftc2re.b φBE
Assertion fct2relem φABE

Proof

Step Hyp Ref Expression
1 ftc2re.e E=CD
2 ftc2re.a φAE
3 ftc2re.b φBE
4 2 1 eleqtrdi φACD
5 eliooxr ACDC*D*
6 4 5 syl φC*D*
7 6 simpld φC*
8 6 simprd φD*
9 eliooord ACDC<AA<D
10 4 9 syl φC<AA<D
11 10 simpld φC<A
12 3 1 eleqtrdi φBCD
13 eliooord BCDC<BB<D
14 12 13 syl φC<BB<D
15 14 simprd φB<D
16 iccssioo C*D*C<AB<DABCD
17 7 8 11 15 16 syl22anc φABCD
18 17 1 sseqtrrdi φABE