Metamath Proof Explorer


Theorem bddibl

Description: A bounded function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Assertion bddibl FMblFnvoldomFxydomFFyxF𝐿1

Proof

Step Hyp Ref Expression
1 mbfdm FMblFndomFdomvol
2 1 3ad2ant1 FMblFnvoldomFxydomFFyxdomFdomvol
3 mbff FMblFnF:domF
4 3 3ad2ant1 FMblFnvoldomFxydomFFyxF:domF
5 4 ffnd FMblFnvoldomFxydomFFyxFFndomF
6 1cnd FMblFnvoldomFxydomFFyx1
7 fnconstg 1domF×1FndomF
8 6 7 syl FMblFnvoldomFxydomFFyxdomF×1FndomF
9 eqidd FMblFnvoldomFxydomFFyxzdomFFz=Fz
10 1ex 1V
11 10 fvconst2 zdomFdomF×1z=1
12 11 adantl FMblFnvoldomFxydomFFyxzdomFdomF×1z=1
13 4 ffvelcdmda FMblFnvoldomFxydomFFyxzdomFFz
14 13 mulridd FMblFnvoldomFxydomFFyxzdomFFz1=Fz
15 2 5 8 5 9 12 14 offveq FMblFnvoldomFxydomFFyxF×fdomF×1=F
16 simp2 FMblFnvoldomFxydomFFyxvoldomF
17 iblconst domFdomvolvoldomF1domF×1𝐿1
18 2 16 6 17 syl3anc FMblFnvoldomFxydomFFyxdomF×1𝐿1
19 bddmulibl FMblFndomF×1𝐿1xydomFFyxF×fdomF×1𝐿1
20 18 19 syld3an2 FMblFnvoldomFxydomFFyxF×fdomF×1𝐿1
21 15 20 eqeltrrd FMblFnvoldomFxydomFFyxF𝐿1