Metamath Proof Explorer


Theorem fdvposlt

Description: Functions with a positive derivative, i.e. monotonously growing functions, preserve strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses fdvposlt.d E=CD
fdvposlt.a φAE
fdvposlt.b φBE
fdvposlt.f φF:E
fdvposlt.c φF:Ecn
fdvposlt.lt φA<B
fdvposlt.1 φxAB0<Fx
Assertion fdvposlt φFA<FB

Proof

Step Hyp Ref Expression
1 fdvposlt.d E=CD
2 fdvposlt.a φAE
3 fdvposlt.b φBE
4 fdvposlt.f φF:E
5 fdvposlt.c φF:Ecn
6 fdvposlt.lt φA<B
7 fdvposlt.1 φxAB0<Fx
8 ioossre CD
9 1 8 eqsstri E
10 9 2 sselid φA
11 9 3 sselid φB
12 10 11 posdifd φA<B0<BA
13 6 12 mpbid φ0<BA
14 10 11 6 ltled φAB
15 volioo ABABvolAB=BA
16 10 11 14 15 syl3anc φvolAB=BA
17 13 16 breqtrrd φ0<volAB
18 ioossicc ABAB
19 18 a1i φABAB
20 ioombl ABdomvol
21 20 a1i φABdomvol
22 cncff F:EcnF:E
23 5 22 syl φF:E
24 23 adantr φxABF:E
25 1 2 3 fct2relem φABE
26 25 sselda φxABxE
27 24 26 ffvelcdmd φxABFx
28 ax-resscn
29 ssid
30 cncfss ABcnABcn
31 28 29 30 mp2an ABcnABcn
32 23 25 feqresmpt φFAB=xABFx
33 rescncf ABEF:EcnFAB:ABcn
34 25 5 33 sylc φFAB:ABcn
35 32 34 eqeltrrd φxABFx:ABcn
36 31 35 sselid φxABFx:ABcn
37 cniccibl ABxABFx:ABcnxABFx𝐿1
38 10 11 36 37 syl3anc φxABFx𝐿1
39 19 21 27 38 iblss φxABFx𝐿1
40 23 adantr φxABF:E
41 19 sselda φxABxAB
42 41 26 syldan φxABxE
43 40 42 ffvelcdmd φxABFx
44 elrp Fx+Fx0<Fx
45 43 7 44 sylanbrc φxABFx+
46 17 39 45 itggt0 φ0<ABFxdx
47 fss F:EF:E
48 4 28 47 sylancl φF:E
49 cncfss EcnEcn
50 28 29 49 mp2an EcnEcn
51 50 5 sselid φF:Ecn
52 1 2 3 14 48 51 ftc2re φABFxdx=FBFA
53 46 52 breqtrd φ0<FBFA
54 4 2 ffvelcdmd φFA
55 4 3 ffvelcdmd φFB
56 54 55 posdifd φFA<FB0<FBFA
57 53 56 mpbird φFA<FB