| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iblss.1 |
|
| 2 |
|
iblss.2 |
|
| 3 |
|
iblss.3 |
|
| 4 |
|
iblss.4 |
|
| 5 |
1
|
resmptd |
|
| 6 |
|
iblmbf |
|
| 7 |
4 6
|
syl |
|
| 8 |
|
mbfres |
|
| 9 |
7 2 8
|
syl2anc |
|
| 10 |
5 9
|
eqeltrrd |
|
| 11 |
|
ifan |
|
| 12 |
1
|
sselda |
|
| 13 |
12
|
ad4ant14 |
|
| 14 |
7 3
|
mbfmptcl |
|
| 15 |
14
|
ad4ant14 |
|
| 16 |
|
ax-icn |
|
| 17 |
|
ine0 |
|
| 18 |
|
elfzelz |
|
| 19 |
18
|
ad3antlr |
|
| 20 |
|
expclz |
|
| 21 |
16 17 19 20
|
mp3an12i |
|
| 22 |
|
expne0i |
|
| 23 |
16 17 19 22
|
mp3an12i |
|
| 24 |
15 21 23
|
divcld |
|
| 25 |
24
|
recld |
|
| 26 |
|
0re |
|
| 27 |
|
ifcl |
|
| 28 |
25 26 27
|
sylancl |
|
| 29 |
28
|
rexrd |
|
| 30 |
|
max1 |
|
| 31 |
26 25 30
|
sylancr |
|
| 32 |
|
elxrge0 |
|
| 33 |
29 31 32
|
sylanbrc |
|
| 34 |
13 33
|
syldan |
|
| 35 |
|
0e0iccpnf |
|
| 36 |
35
|
a1i |
|
| 37 |
34 36
|
ifclda |
|
| 38 |
11 37
|
eqeltrid |
|
| 39 |
38
|
fmpttd |
|
| 40 |
|
eqidd |
|
| 41 |
|
eqidd |
|
| 42 |
40 41 4 3
|
iblitg |
|
| 43 |
18 42
|
sylan2 |
|
| 44 |
|
ifan |
|
| 45 |
35
|
a1i |
|
| 46 |
33 45
|
ifclda |
|
| 47 |
44 46
|
eqeltrid |
|
| 48 |
47
|
fmpttd |
|
| 49 |
28
|
leidd |
|
| 50 |
|
breq1 |
|
| 51 |
|
breq1 |
|
| 52 |
50 51
|
ifboth |
|
| 53 |
49 31 52
|
syl2anc |
|
| 54 |
|
iftrue |
|
| 55 |
54
|
adantl |
|
| 56 |
53 55
|
breqtrrd |
|
| 57 |
|
0le0 |
|
| 58 |
57
|
a1i |
|
| 59 |
13
|
stoic1a |
|
| 60 |
59
|
iffalsed |
|
| 61 |
|
iffalse |
|
| 62 |
61
|
adantl |
|
| 63 |
58 60 62
|
3brtr4d |
|
| 64 |
56 63
|
pm2.61dan |
|
| 65 |
64 11 44
|
3brtr4g |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
|
reex |
|
| 68 |
67
|
a1i |
|
| 69 |
|
eqidd |
|
| 70 |
|
eqidd |
|
| 71 |
68 38 47 69 70
|
ofrfval2 |
|
| 72 |
66 71
|
mpbird |
|
| 73 |
|
itg2le |
|
| 74 |
39 48 72 73
|
syl3anc |
|
| 75 |
|
itg2lecl |
|
| 76 |
39 43 74 75
|
syl3anc |
|
| 77 |
76
|
ralrimiva |
|
| 78 |
|
eqidd |
|
| 79 |
|
eqidd |
|
| 80 |
12 14
|
syldan |
|
| 81 |
78 79 80
|
isibl2 |
|
| 82 |
10 77 81
|
mpbir2and |
|