Metamath Proof Explorer


Theorem itg2lecl

Description: If an S.2 integral is bounded above, then it is real. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2lecl F:0+∞A2FA2F

Proof

Step Hyp Ref Expression
1 itg2cl F:0+∞2F*
2 1 3ad2ant1 F:0+∞A2FA2F*
3 simp2 F:0+∞A2FAA
4 itg2ge0 F:0+∞02F
5 4 3ad2ant1 F:0+∞A2FA02F
6 simp3 F:0+∞A2FA2FA
7 xrrege0 2F*A02F2FA2F
8 2 3 5 6 7 syl22anc F:0+∞A2FA2F