Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iblss2.1 | |
|
iblss2.2 | |
||
iblss2.3 | |
||
iblss2.4 | |
||
iblss2.5 | |
||
Assertion | iblss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iblss2.1 | |
|
2 | iblss2.2 | |
|
3 | iblss2.3 | |
|
4 | iblss2.4 | |
|
5 | iblss2.5 | |
|
6 | iblmbf | |
|
7 | 5 6 | syl | |
8 | 1 2 3 4 7 | mbfss | |
9 | 1 | adantr | |
10 | 9 | sselda | |
11 | 10 | iftrued | |
12 | iftrue | |
|
13 | 12 | adantl | |
14 | 11 13 | eqtr4d | |
15 | ifid | |
|
16 | simplll | |
|
17 | simpr | |
|
18 | simplr | |
|
19 | 17 18 | eldifd | |
20 | 16 19 4 | syl2anc | |
21 | 20 | oveq1d | |
22 | simpllr | |
|
23 | elfzelz | |
|
24 | ax-icn | |
|
25 | ine0 | |
|
26 | expclz | |
|
27 | expne0i | |
|
28 | 26 27 | div0d | |
29 | 24 25 28 | mp3an12 | |
30 | 22 23 29 | 3syl | |
31 | 21 30 | eqtrd | |
32 | 31 | fveq2d | |
33 | re0 | |
|
34 | 32 33 | eqtrdi | |
35 | 34 | ifeq1d | |
36 | ifid | |
|
37 | 35 36 | eqtrdi | |
38 | 37 | ifeq1da | |
39 | iffalse | |
|
40 | 39 | adantl | |
41 | 15 38 40 | 3eqtr4a | |
42 | 14 41 | pm2.61dan | |
43 | ifan | |
|
44 | ifan | |
|
45 | 42 43 44 | 3eqtr4g | |
46 | 45 | mpteq2dv | |
47 | 46 | fveq2d | |
48 | eqidd | |
|
49 | eqidd | |
|
50 | 48 49 5 3 | iblitg | |
51 | 23 50 | sylan2 | |
52 | 47 51 | eqeltrd | |
53 | 52 | ralrimiva | |
54 | eqidd | |
|
55 | eqidd | |
|
56 | elun | |
|
57 | undif2 | |
|
58 | ssequn1 | |
|
59 | 1 58 | sylib | |
60 | 57 59 | eqtrid | |
61 | 60 | eleq2d | |
62 | 56 61 | bitr3id | |
63 | 62 | biimpar | |
64 | 7 3 | mbfmptcl | |
65 | 0cn | |
|
66 | 4 65 | eqeltrdi | |
67 | 64 66 | jaodan | |
68 | 63 67 | syldan | |
69 | 54 55 68 | isibl2 | |
70 | 8 53 69 | mpbir2and | |