Step |
Hyp |
Ref |
Expression |
1 |
|
iblss2.1 |
|
2 |
|
iblss2.2 |
|
3 |
|
iblss2.3 |
|
4 |
|
iblss2.4 |
|
5 |
|
iblss2.5 |
|
6 |
|
iblmbf |
|
7 |
5 6
|
syl |
|
8 |
1 2 3 4 7
|
mbfss |
|
9 |
1
|
adantr |
|
10 |
9
|
sselda |
|
11 |
10
|
iftrued |
|
12 |
|
iftrue |
|
13 |
12
|
adantl |
|
14 |
11 13
|
eqtr4d |
|
15 |
|
ifid |
|
16 |
|
simplll |
|
17 |
|
simpr |
|
18 |
|
simplr |
|
19 |
17 18
|
eldifd |
|
20 |
16 19 4
|
syl2anc |
|
21 |
20
|
oveq1d |
|
22 |
|
simpllr |
|
23 |
|
elfzelz |
|
24 |
|
ax-icn |
|
25 |
|
ine0 |
|
26 |
|
expclz |
|
27 |
|
expne0i |
|
28 |
26 27
|
div0d |
|
29 |
24 25 28
|
mp3an12 |
|
30 |
22 23 29
|
3syl |
|
31 |
21 30
|
eqtrd |
|
32 |
31
|
fveq2d |
|
33 |
|
re0 |
|
34 |
32 33
|
eqtrdi |
|
35 |
34
|
ifeq1d |
|
36 |
|
ifid |
|
37 |
35 36
|
eqtrdi |
|
38 |
37
|
ifeq1da |
|
39 |
|
iffalse |
|
40 |
39
|
adantl |
|
41 |
15 38 40
|
3eqtr4a |
|
42 |
14 41
|
pm2.61dan |
|
43 |
|
ifan |
|
44 |
|
ifan |
|
45 |
42 43 44
|
3eqtr4g |
|
46 |
45
|
mpteq2dv |
|
47 |
46
|
fveq2d |
|
48 |
|
eqidd |
|
49 |
|
eqidd |
|
50 |
48 49 5 3
|
iblitg |
|
51 |
23 50
|
sylan2 |
|
52 |
47 51
|
eqeltrd |
|
53 |
52
|
ralrimiva |
|
54 |
|
eqidd |
|
55 |
|
eqidd |
|
56 |
|
elun |
|
57 |
|
undif2 |
|
58 |
|
ssequn1 |
|
59 |
1 58
|
sylib |
|
60 |
57 59
|
eqtrid |
|
61 |
60
|
eleq2d |
|
62 |
56 61
|
bitr3id |
|
63 |
62
|
biimpar |
|
64 |
7 3
|
mbfmptcl |
|
65 |
|
0cn |
|
66 |
4 65
|
eqeltrdi |
|
67 |
64 66
|
jaodan |
|
68 |
63 67
|
syldan |
|
69 |
54 55 68
|
isibl2 |
|
70 |
8 53 69
|
mpbir2and |
|