| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑁 = 0 → ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) = ( ( i · ( 2 · π ) ) · ( 0 · 𝑥 ) ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑁 = 0 → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( 0 · 𝑥 ) ) ) ) |
| 4 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 5 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 6 |
4 5
|
sstri |
⊢ ( 0 (,) 1 ) ⊆ ℂ |
| 7 |
6
|
sseli |
⊢ ( 𝑥 ∈ ( 0 (,) 1 ) → 𝑥 ∈ ℂ ) |
| 8 |
7
|
mul02d |
⊢ ( 𝑥 ∈ ( 0 (,) 1 ) → ( 0 · 𝑥 ) = 0 ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑥 ∈ ( 0 (,) 1 ) → ( ( i · ( 2 · π ) ) · ( 0 · 𝑥 ) ) = ( ( i · ( 2 · π ) ) · 0 ) ) |
| 10 |
|
ax-icn |
⊢ i ∈ ℂ |
| 11 |
|
2cn |
⊢ 2 ∈ ℂ |
| 12 |
|
picn |
⊢ π ∈ ℂ |
| 13 |
11 12
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 14 |
10 13
|
mulcli |
⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 15 |
14
|
mul01i |
⊢ ( ( i · ( 2 · π ) ) · 0 ) = 0 |
| 16 |
9 15
|
eqtrdi |
⊢ ( 𝑥 ∈ ( 0 (,) 1 ) → ( ( i · ( 2 · π ) ) · ( 0 · 𝑥 ) ) = 0 ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑥 ∈ ( 0 (,) 1 ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 0 · 𝑥 ) ) ) = ( exp ‘ 0 ) ) |
| 18 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 19 |
17 18
|
eqtrdi |
⊢ ( 𝑥 ∈ ( 0 (,) 1 ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 0 · 𝑥 ) ) ) = 1 ) |
| 20 |
3 19
|
sylan9eq |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) = 1 ) |
| 21 |
20
|
ralrimiva |
⊢ ( 𝑁 = 0 → ∀ 𝑥 ∈ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) = 1 ) |
| 22 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) = 1 → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ∫ ( 0 (,) 1 ) 1 d 𝑥 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝑁 = 0 → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ∫ ( 0 (,) 1 ) 1 d 𝑥 ) |
| 24 |
|
ioombl |
⊢ ( 0 (,) 1 ) ∈ dom vol |
| 25 |
|
0re |
⊢ 0 ∈ ℝ |
| 26 |
|
1re |
⊢ 1 ∈ ℝ |
| 27 |
|
ioovolcl |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ( vol ‘ ( 0 (,) 1 ) ) ∈ ℝ ) |
| 28 |
25 26 27
|
mp2an |
⊢ ( vol ‘ ( 0 (,) 1 ) ) ∈ ℝ |
| 29 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 30 |
|
itgconst |
⊢ ( ( ( 0 (,) 1 ) ∈ dom vol ∧ ( vol ‘ ( 0 (,) 1 ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ∫ ( 0 (,) 1 ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) 1 ) ) ) ) |
| 31 |
24 28 29 30
|
mp3an |
⊢ ∫ ( 0 (,) 1 ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) 1 ) ) ) |
| 32 |
|
0le1 |
⊢ 0 ≤ 1 |
| 33 |
|
volioo |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1 ) → ( vol ‘ ( 0 (,) 1 ) ) = ( 1 − 0 ) ) |
| 34 |
25 26 32 33
|
mp3an |
⊢ ( vol ‘ ( 0 (,) 1 ) ) = ( 1 − 0 ) |
| 35 |
29
|
subid1i |
⊢ ( 1 − 0 ) = 1 |
| 36 |
34 35
|
eqtri |
⊢ ( vol ‘ ( 0 (,) 1 ) ) = 1 |
| 37 |
36
|
oveq2i |
⊢ ( 1 · ( vol ‘ ( 0 (,) 1 ) ) ) = ( 1 · 1 ) |
| 38 |
29
|
mulridi |
⊢ ( 1 · 1 ) = 1 |
| 39 |
31 37 38
|
3eqtri |
⊢ ∫ ( 0 (,) 1 ) 1 d 𝑥 = 1 |
| 40 |
23 39
|
eqtrdi |
⊢ ( 𝑁 = 0 → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 = 1 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 = 0 ) → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 = 1 ) |
| 42 |
41
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 = 0 ) → 1 = ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 43 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
| 44 |
43
|
eqcomi |
⊢ ℝ = ( -∞ (,) +∞ ) |
| 45 |
|
0red |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 0 ∈ ℝ ) |
| 46 |
|
1red |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 1 ∈ ℝ ) |
| 47 |
32
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 0 ≤ 1 ) |
| 48 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ℝ ⊆ ℂ ) |
| 49 |
48
|
sselda |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 50 |
10
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → i ∈ ℂ ) |
| 51 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 2 ∈ ℂ ) |
| 52 |
12
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → π ∈ ℂ ) |
| 53 |
51 52
|
mulcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 2 · π ) ∈ ℂ ) |
| 54 |
50 53
|
mulcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 55 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 𝑁 ∈ ℤ ) |
| 56 |
55
|
zcnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 𝑁 ∈ ℂ ) |
| 57 |
54 56
|
mulcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ∈ ℂ ) |
| 58 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℂ ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ∈ ℂ ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 60 |
58 59
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℂ ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ∈ ℂ ) |
| 61 |
60
|
efcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℂ ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ∈ ℂ ) |
| 62 |
49 61
|
syldan |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ∈ ℂ ) |
| 63 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ∈ ℂ ) |
| 64 |
|
ine0 |
⊢ i ≠ 0 |
| 65 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 66 |
|
pipos |
⊢ 0 < π |
| 67 |
25 66
|
gtneii |
⊢ π ≠ 0 |
| 68 |
11 12 65 67
|
mulne0i |
⊢ ( 2 · π ) ≠ 0 |
| 69 |
10 13 64 68
|
mulne0i |
⊢ ( i · ( 2 · π ) ) ≠ 0 |
| 70 |
69
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( i · ( 2 · π ) ) ≠ 0 ) |
| 71 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ¬ 𝑁 = 0 ) |
| 72 |
71
|
neqned |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 𝑁 ≠ 0 ) |
| 73 |
54 56 70 72
|
mulne0d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ≠ 0 ) |
| 74 |
73
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ≠ 0 ) |
| 75 |
62 63 74
|
divcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ∈ ℂ ) |
| 76 |
75
|
fmpttd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) : ℝ ⟶ ℂ ) |
| 77 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 78 |
77
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ℝ ∈ { ℝ , ℂ } ) |
| 79 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 80 |
79
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ℂ ∈ { ℝ , ℂ } ) |
| 81 |
63 49
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ∈ ℂ ) |
| 82 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
| 83 |
82
|
efcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑧 ∈ ℂ ) → ( exp ‘ 𝑧 ) ∈ ℂ ) |
| 84 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑧 ∈ ℂ ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ∈ ℂ ) |
| 85 |
73
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑧 ∈ ℂ ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ≠ 0 ) |
| 86 |
83 84 85
|
divcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑧 ∈ ℂ ) → ( ( exp ‘ 𝑧 ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ∈ ℂ ) |
| 87 |
26
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ ) |
| 88 |
78
|
dvmptid |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 89 |
78 49 87 88 57
|
dvmptcmul |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) ) |
| 90 |
63
|
mulridd |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) = ( ( i · ( 2 · π ) ) · 𝑁 ) ) |
| 91 |
90
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℝ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) = ( 𝑦 ∈ ℝ ↦ ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 92 |
89 91
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 93 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
| 94 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 95 |
94
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → exp : ℂ ⟶ ℂ ) |
| 96 |
95
|
feqmptd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → exp = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
| 97 |
96
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℂ D exp ) = ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) ) |
| 98 |
93 97 96
|
3eqtr3a |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
| 99 |
80 83 83 98 57 73
|
dvmptdivc |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑧 ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑧 ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) |
| 100 |
|
fveq2 |
⊢ ( 𝑧 = ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) → ( exp ‘ 𝑧 ) = ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝑧 = ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) → ( ( exp ‘ 𝑧 ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) = ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 102 |
78 80 81 63 86 86 92 99 101 101
|
dvmptco |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) · ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) |
| 103 |
62 63 74
|
divcan1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) · ( ( i · ( 2 · π ) ) · 𝑁 ) ) = ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) |
| 104 |
103
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℝ ↦ ( ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) · ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) ) |
| 105 |
102 104
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) ) |
| 106 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
| 107 |
106
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 108 |
|
resmpt |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) |
| 109 |
5 108
|
mp1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) |
| 110 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) |
| 111 |
110
|
mulc1cncf |
⊢ ( ( ( i · ( 2 · π ) ) · 𝑁 ) ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 112 |
57 111
|
syl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 113 |
|
rescncf |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) ) |
| 114 |
5 113
|
mp1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) ) |
| 115 |
112 114
|
mpd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 𝑦 ∈ ℂ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ↾ ℝ ) ∈ ( ℝ –cn→ ℂ ) ) |
| 116 |
109 115
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℝ ↦ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 117 |
107 116
|
cncfmpt1f |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 118 |
105 117
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ∈ ( ℝ –cn→ ℂ ) ) |
| 119 |
44 45 46 47 76 118
|
ftc2re |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 1 ) − ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 0 ) ) ) |
| 120 |
4
|
sseli |
⊢ ( 𝑥 ∈ ( 0 (,) 1 ) → 𝑥 ∈ ℝ ) |
| 121 |
105
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) ) |
| 122 |
121
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 123 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) = ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ) |
| 124 |
123
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) = ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ) ) |
| 125 |
124
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ) ) |
| 126 |
125
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ) ) ) |
| 127 |
57
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( i · ( 2 · π ) ) · 𝑁 ) ∈ ℂ ) |
| 128 |
48
|
sselda |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 129 |
127 128
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ∈ ℂ ) |
| 130 |
129
|
efcld |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ) ∈ ℂ ) |
| 131 |
126 130
|
fvmpt2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) ‘ 𝑥 ) = ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ) ) |
| 132 |
14
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 133 |
56
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → 𝑁 ∈ ℂ ) |
| 134 |
132 133 128
|
mulassd |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) = ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) |
| 135 |
134
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑥 ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) ) |
| 136 |
131 135
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) ) ‘ 𝑥 ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) ) |
| 137 |
122 136
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) ) |
| 138 |
120 137
|
sylan2 |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) ) |
| 139 |
138
|
ralrimiva |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ∀ 𝑥 ∈ ( 0 (,) 1 ) ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) ) |
| 140 |
|
itgeq2 |
⊢ ( ∀ 𝑥 ∈ ( 0 (,) 1 ) ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 141 |
139 140
|
syl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ∫ ( 0 (,) 1 ) ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 142 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) |
| 143 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 1 ) → 𝑦 = 1 ) |
| 144 |
143
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 1 ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) = ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) |
| 145 |
144
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 1 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) = ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) ) |
| 146 |
145
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 1 ) → ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) = ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 147 |
29
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 1 ∈ ℂ ) |
| 148 |
57 147
|
mulcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ∈ ℂ ) |
| 149 |
148
|
efcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) ∈ ℂ ) |
| 150 |
149 57 73
|
divcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ∈ ℂ ) |
| 151 |
142 146 46 150
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 1 ) = ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 152 |
57
|
mulridd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) = ( ( i · ( 2 · π ) ) · 𝑁 ) ) |
| 153 |
152
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 154 |
|
ef2kpi |
⊢ ( 𝑁 ∈ ℤ → ( exp ‘ ( ( i · ( 2 · π ) ) · 𝑁 ) ) = 1 ) |
| 155 |
55 154
|
syl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( exp ‘ ( ( i · ( 2 · π ) ) · 𝑁 ) ) = 1 ) |
| 156 |
153 155
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) = 1 ) |
| 157 |
156
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 1 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) = ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 158 |
151 157
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 1 ) = ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 159 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
| 160 |
159
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 0 ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) = ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) |
| 161 |
160
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 0 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) = ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) ) |
| 162 |
161
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) ∧ 𝑦 = 0 ) → ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) = ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 163 |
5 45
|
sselid |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 0 ∈ ℂ ) |
| 164 |
57 163
|
mulcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ∈ ℂ ) |
| 165 |
164
|
efcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) ∈ ℂ ) |
| 166 |
165 57 73
|
divcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ∈ ℂ ) |
| 167 |
142 162 45 166
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 0 ) = ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 168 |
57
|
mul01d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) = 0 ) |
| 169 |
168
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) = ( exp ‘ 0 ) ) |
| 170 |
169 18
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) = 1 ) |
| 171 |
170
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 0 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) = ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 172 |
167 171
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 0 ) = ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) |
| 173 |
158 172
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 1 ) − ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 0 ) ) = ( ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) − ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ) |
| 174 |
157 150
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ∈ ℂ ) |
| 175 |
174
|
subidd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) − ( 1 / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) = 0 ) |
| 176 |
173 175
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ( ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 1 ) − ( ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( ( ( i · ( 2 · π ) ) · 𝑁 ) · 𝑦 ) ) / ( ( i · ( 2 · π ) ) · 𝑁 ) ) ) ‘ 0 ) ) = 0 ) |
| 177 |
119 141 176
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 = 0 ) |
| 178 |
177
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0 ) → 0 = ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 179 |
42 178
|
ifeqda |
⊢ ( 𝑁 ∈ ℤ → if ( 𝑁 = 0 , 1 , 0 ) = ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 180 |
179
|
eqcomd |
⊢ ( 𝑁 ∈ ℤ → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑁 · 𝑥 ) ) ) d 𝑥 = if ( 𝑁 = 0 , 1 , 0 ) ) |