Metamath Proof Explorer


Theorem volioo

Description: The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion volioo ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ioombl ( 𝐴 (,) 𝐵 ) ∈ dom vol
2 mblvol ( ( 𝐴 (,) 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) )
3 1 2 ax-mp ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) )
4 ovolioo ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵𝐴 ) )
5 3 4 eqtrid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵𝐴 ) )