Metamath Proof Explorer


Theorem volioo

Description: The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion volioo
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) )

Proof

Step Hyp Ref Expression
1 ioombl
 |-  ( A (,) B ) e. dom vol
2 mblvol
 |-  ( ( A (,) B ) e. dom vol -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) )
3 1 2 ax-mp
 |-  ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) )
4 ovolioo
 |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) )
5 3 4 eqtrid
 |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) )