| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breprexp.n |
|
| 2 |
|
breprexp.s |
|
| 3 |
|
breprexplema.m |
|
| 4 |
|
breprexplema.1 |
|
| 5 |
|
breprexplema.l |
|
| 6 |
|
fz1ssnn |
|
| 7 |
6
|
a1i |
|
| 8 |
3
|
nn0zd |
|
| 9 |
|
eqid |
|
| 10 |
7 8 2 9
|
reprsuc |
|
| 11 |
10
|
sumeq1d |
|
| 12 |
|
fzfid |
|
| 13 |
6
|
a1i |
|
| 14 |
8
|
adantr |
|
| 15 |
|
fzssz |
|
| 16 |
|
simpr |
|
| 17 |
15 16
|
sselid |
|
| 18 |
14 17
|
zsubcld |
|
| 19 |
2
|
adantr |
|
| 20 |
12
|
adantr |
|
| 21 |
13 18 19 20
|
reprfi |
|
| 22 |
|
mptfi |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
rnfi |
|
| 25 |
23 24
|
syl |
|
| 26 |
13 18 19
|
reprval |
|
| 27 |
|
ssrab2 |
|
| 28 |
26 27
|
eqsstrdi |
|
| 29 |
12
|
elexd |
|
| 30 |
|
fzonel |
|
| 31 |
30
|
a1i |
|
| 32 |
28 29 2 31 9
|
actfunsnrndisj |
|
| 33 |
|
fzofi |
|
| 34 |
33
|
a1i |
|
| 35 |
5
|
ralrimiva |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
36
|
ad3antrrr |
|
| 38 |
|
simpr |
|
| 39 |
|
nfv |
|
| 40 |
|
nfcv |
|
| 41 |
|
nfmpt1 |
|
| 42 |
41
|
nfrn |
|
| 43 |
40 42
|
nfel |
|
| 44 |
39 43
|
nfan |
|
| 45 |
6
|
a1i |
|
| 46 |
18
|
ad3antrrr |
|
| 47 |
19
|
ad3antrrr |
|
| 48 |
|
simplr |
|
| 49 |
45 46 47 48
|
reprf |
|
| 50 |
16
|
ad3antrrr |
|
| 51 |
47 50
|
fsnd |
|
| 52 |
|
fzodisjsn |
|
| 53 |
52
|
a1i |
|
| 54 |
|
fun2 |
|
| 55 |
49 51 53 54
|
syl21anc |
|
| 56 |
|
simpr |
|
| 57 |
|
nn0uz |
|
| 58 |
2 57
|
eleqtrdi |
|
| 59 |
|
fzosplitsn |
|
| 60 |
58 59
|
syl |
|
| 61 |
60
|
ad4antr |
|
| 62 |
56 61
|
feq12d |
|
| 63 |
55 62
|
mpbird |
|
| 64 |
|
simpr |
|
| 65 |
|
vex |
|
| 66 |
|
snex |
|
| 67 |
65 66
|
unex |
|
| 68 |
9 67
|
elrnmpti |
|
| 69 |
64 68
|
sylib |
|
| 70 |
44 63 69
|
r19.29af |
|
| 71 |
70
|
adantr |
|
| 72 |
71 38
|
ffvelcdmd |
|
| 73 |
6 72
|
sselid |
|
| 74 |
|
fveq2 |
|
| 75 |
74
|
fveq1d |
|
| 76 |
75
|
eleq1d |
|
| 77 |
|
fveq2 |
|
| 78 |
77
|
eleq1d |
|
| 79 |
76 78
|
rspc2v |
|
| 80 |
38 73 79
|
syl2anc |
|
| 81 |
37 80
|
mpd |
|
| 82 |
34 81
|
fprodcl |
|
| 83 |
82
|
anasss |
|
| 84 |
12 25 32 83
|
fsumiun |
|
| 85 |
60
|
ad2antrr |
|
| 86 |
85
|
prodeq1d |
|
| 87 |
|
nfv |
|
| 88 |
|
nfcv |
|
| 89 |
|
fzofi |
|
| 90 |
89
|
a1i |
|
| 91 |
19
|
adantr |
|
| 92 |
30
|
a1i |
|
| 93 |
6
|
a1i |
|
| 94 |
18
|
adantr |
|
| 95 |
|
simpr |
|
| 96 |
93 94 91 95
|
reprf |
|
| 97 |
96
|
ffnd |
|
| 98 |
97
|
adantr |
|
| 99 |
16
|
adantr |
|
| 100 |
|
fnsng |
|
| 101 |
91 99 100
|
syl2anc |
|
| 102 |
101
|
adantr |
|
| 103 |
52
|
a1i |
|
| 104 |
|
simpr |
|
| 105 |
|
fvun1 |
|
| 106 |
98 102 103 104 105
|
syl112anc |
|
| 107 |
106
|
fveq2d |
|
| 108 |
36
|
ad2antrr |
|
| 109 |
108
|
adantr |
|
| 110 |
|
fzossfzop1 |
|
| 111 |
2 110
|
syl |
|
| 112 |
111
|
ad2antrr |
|
| 113 |
112
|
sselda |
|
| 114 |
96
|
ffvelcdmda |
|
| 115 |
6 114
|
sselid |
|
| 116 |
|
fveq2 |
|
| 117 |
116
|
eleq1d |
|
| 118 |
76 117
|
rspc2v |
|
| 119 |
113 115 118
|
syl2anc |
|
| 120 |
109 119
|
mpd |
|
| 121 |
107 120
|
eqeltrd |
|
| 122 |
|
fveq2 |
|
| 123 |
|
fveq2 |
|
| 124 |
122 123
|
fveq12d |
|
| 125 |
52
|
a1i |
|
| 126 |
|
snidg |
|
| 127 |
91 126
|
syl |
|
| 128 |
|
fvun2 |
|
| 129 |
97 101 125 127 128
|
syl112anc |
|
| 130 |
|
fvsng |
|
| 131 |
91 99 130
|
syl2anc |
|
| 132 |
129 131
|
eqtrd |
|
| 133 |
132
|
fveq2d |
|
| 134 |
|
fzonn0p1 |
|
| 135 |
2 134
|
syl |
|
| 136 |
135
|
ad2antrr |
|
| 137 |
6 99
|
sselid |
|
| 138 |
|
fveq2 |
|
| 139 |
138
|
fveq1d |
|
| 140 |
139
|
eleq1d |
|
| 141 |
|
fveq2 |
|
| 142 |
141
|
eleq1d |
|
| 143 |
140 142
|
rspc2v |
|
| 144 |
136 137 143
|
syl2anc |
|
| 145 |
108 144
|
mpd |
|
| 146 |
133 145
|
eqeltrd |
|
| 147 |
87 88 90 91 92 121 124 146
|
fprodsplitsn |
|
| 148 |
107
|
prodeq2dv |
|
| 149 |
148 133
|
oveq12d |
|
| 150 |
86 147 149
|
3eqtrd |
|
| 151 |
150
|
sumeq2dv |
|
| 152 |
|
simpl |
|
| 153 |
152
|
fveq1d |
|
| 154 |
153
|
fveq2d |
|
| 155 |
154
|
prodeq2dv |
|
| 156 |
28 29 2 31 9
|
actfunsnf1o |
|
| 157 |
9
|
a1i |
|
| 158 |
|
simpr |
|
| 159 |
158
|
uneq1d |
|
| 160 |
|
vex |
|
| 161 |
160 66
|
unex |
|
| 162 |
161
|
a1i |
|
| 163 |
157 159 95 162
|
fvmptd |
|
| 164 |
155 21 156 163 82
|
fsumf1o |
|
| 165 |
|
simpl |
|
| 166 |
165
|
fveq1d |
|
| 167 |
166
|
fveq2d |
|
| 168 |
167
|
prodeq2dv |
|
| 169 |
168
|
oveq1d |
|
| 170 |
169
|
cbvsumv |
|
| 171 |
170
|
a1i |
|
| 172 |
151 164 171
|
3eqtr4d |
|
| 173 |
172
|
sumeq2dv |
|
| 174 |
11 84 173
|
3eqtrd |
|