Metamath Proof Explorer


Theorem breprexplema

Description: Lemma for breprexp (induction step for weighted sums over representations). (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses breprexp.n φN0
breprexp.s φS0
breprexplema.m φM0
breprexplema.1 φMS+1 N
breprexplema.l φx0..^S+1yLxy
Assertion breprexplema φd1NreprS+1Ma0..^S+1Lada=b=1Nd1NreprSMba0..^SLadaLSb

Proof

Step Hyp Ref Expression
1 breprexp.n φN0
2 breprexp.s φS0
3 breprexplema.m φM0
4 breprexplema.1 φMS+1 N
5 breprexplema.l φx0..^S+1yLxy
6 fz1ssnn 1N
7 6 a1i φ1N
8 3 nn0zd φM
9 eqid v1NreprSMbvSb=v1NreprSMbvSb
10 7 8 2 9 reprsuc φ1NreprS+1M=b=1Nranv1NreprSMbvSb
11 10 sumeq1d φd1NreprS+1Ma0..^S+1Lada=db=1Nranv1NreprSMbvSba0..^S+1Lada
12 fzfid φ1NFin
13 6 a1i φb1N1N
14 8 adantr φb1NM
15 fzssz 1N
16 simpr φb1Nb1N
17 15 16 sselid φb1Nb
18 14 17 zsubcld φb1NMb
19 2 adantr φb1NS0
20 12 adantr φb1N1NFin
21 13 18 19 20 reprfi φb1N1NreprSMbFin
22 mptfi 1NreprSMbFinv1NreprSMbvSbFin
23 21 22 syl φb1Nv1NreprSMbvSbFin
24 rnfi v1NreprSMbvSbFinranv1NreprSMbvSbFin
25 23 24 syl φb1Nranv1NreprSMbvSbFin
26 13 18 19 reprval φb1N1NreprSMb=c1N0..^S|a0..^Sca=Mb
27 ssrab2 c1N0..^S|a0..^Sca=Mb1N0..^S
28 26 27 eqsstrdi φb1N1NreprSMb1N0..^S
29 12 elexd φ1NV
30 fzonel ¬S0..^S
31 30 a1i φ¬S0..^S
32 28 29 2 31 9 actfunsnrndisj φDisjb=1Nranv1NreprSMbvSb
33 fzofi 0..^S+1Fin
34 33 a1i φb1Ndranv1NreprSMbvSb0..^S+1Fin
35 5 ralrimiva φx0..^S+1yLxy
36 35 ralrimiva φx0..^S+1yLxy
37 36 ad3antrrr φb1Ndranv1NreprSMbvSba0..^S+1x0..^S+1yLxy
38 simpr φb1Ndranv1NreprSMbvSba0..^S+1a0..^S+1
39 nfv vφb1N
40 nfcv _vd
41 nfmpt1 _vv1NreprSMbvSb
42 41 nfrn _vranv1NreprSMbvSb
43 40 42 nfel vdranv1NreprSMbvSb
44 39 43 nfan vφb1Ndranv1NreprSMbvSb
45 6 a1i φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSb1N
46 18 ad3antrrr φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbMb
47 19 ad3antrrr φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbS0
48 simplr φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbv1NreprSMb
49 45 46 47 48 reprf φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbv:0..^S1N
50 16 ad3antrrr φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbb1N
51 47 50 fsnd φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbSb:S1N
52 fzodisjsn 0..^SS=
53 52 a1i φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSb0..^SS=
54 fun2 v:0..^S1NSb:S1N0..^SS=vSb:0..^SS1N
55 49 51 53 54 syl21anc φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbvSb:0..^SS1N
56 simpr φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbd=vSb
57 nn0uz 0=0
58 2 57 eleqtrdi φS0
59 fzosplitsn S00..^S+1=0..^SS
60 58 59 syl φ0..^S+1=0..^SS
61 60 ad4antr φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSb0..^S+1=0..^SS
62 56 61 feq12d φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbd:0..^S+11NvSb:0..^SS1N
63 55 62 mpbird φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSbd:0..^S+11N
64 simpr φb1Ndranv1NreprSMbvSbdranv1NreprSMbvSb
65 vex vV
66 snex SbV
67 65 66 unex vSbV
68 9 67 elrnmpti dranv1NreprSMbvSbv1NreprSMbd=vSb
69 64 68 sylib φb1Ndranv1NreprSMbvSbv1NreprSMbd=vSb
70 44 63 69 r19.29af φb1Ndranv1NreprSMbvSbd:0..^S+11N
71 70 adantr φb1Ndranv1NreprSMbvSba0..^S+1d:0..^S+11N
72 71 38 ffvelcdmd φb1Ndranv1NreprSMbvSba0..^S+1da1N
73 6 72 sselid φb1Ndranv1NreprSMbvSba0..^S+1da
74 fveq2 x=aLx=La
75 74 fveq1d x=aLxy=Lay
76 75 eleq1d x=aLxyLay
77 fveq2 y=daLay=Lada
78 77 eleq1d y=daLayLada
79 76 78 rspc2v a0..^S+1dax0..^S+1yLxyLada
80 38 73 79 syl2anc φb1Ndranv1NreprSMbvSba0..^S+1x0..^S+1yLxyLada
81 37 80 mpd φb1Ndranv1NreprSMbvSba0..^S+1Lada
82 34 81 fprodcl φb1Ndranv1NreprSMbvSba0..^S+1Lada
83 82 anasss φb1Ndranv1NreprSMbvSba0..^S+1Lada
84 12 25 32 83 fsumiun φdb=1Nranv1NreprSMbvSba0..^S+1Lada=b=1Ndranv1NreprSMbvSba0..^S+1Lada
85 60 ad2antrr φb1Ne1NreprSMb0..^S+1=0..^SS
86 85 prodeq1d φb1Ne1NreprSMba0..^S+1LaeSba=a0..^SSLaeSba
87 nfv aφb1Ne1NreprSMb
88 nfcv _aLSeSbS
89 fzofi 0..^SFin
90 89 a1i φb1Ne1NreprSMb0..^SFin
91 19 adantr φb1Ne1NreprSMbS0
92 30 a1i φb1Ne1NreprSMb¬S0..^S
93 6 a1i φb1Ne1NreprSMb1N
94 18 adantr φb1Ne1NreprSMbMb
95 simpr φb1Ne1NreprSMbe1NreprSMb
96 93 94 91 95 reprf φb1Ne1NreprSMbe:0..^S1N
97 96 ffnd φb1Ne1NreprSMbeFn0..^S
98 97 adantr φb1Ne1NreprSMba0..^SeFn0..^S
99 16 adantr φb1Ne1NreprSMbb1N
100 fnsng S0b1NSbFnS
101 91 99 100 syl2anc φb1Ne1NreprSMbSbFnS
102 101 adantr φb1Ne1NreprSMba0..^SSbFnS
103 52 a1i φb1Ne1NreprSMba0..^S0..^SS=
104 simpr φb1Ne1NreprSMba0..^Sa0..^S
105 fvun1 eFn0..^SSbFnS0..^SS=a0..^SeSba=ea
106 98 102 103 104 105 syl112anc φb1Ne1NreprSMba0..^SeSba=ea
107 106 fveq2d φb1Ne1NreprSMba0..^SLaeSba=Laea
108 36 ad2antrr φb1Ne1NreprSMbx0..^S+1yLxy
109 108 adantr φb1Ne1NreprSMba0..^Sx0..^S+1yLxy
110 fzossfzop1 S00..^S0..^S+1
111 2 110 syl φ0..^S0..^S+1
112 111 ad2antrr φb1Ne1NreprSMb0..^S0..^S+1
113 112 sselda φb1Ne1NreprSMba0..^Sa0..^S+1
114 96 ffvelcdmda φb1Ne1NreprSMba0..^Sea1N
115 6 114 sselid φb1Ne1NreprSMba0..^Sea
116 fveq2 y=eaLay=Laea
117 116 eleq1d y=eaLayLaea
118 76 117 rspc2v a0..^S+1eax0..^S+1yLxyLaea
119 113 115 118 syl2anc φb1Ne1NreprSMba0..^Sx0..^S+1yLxyLaea
120 109 119 mpd φb1Ne1NreprSMba0..^SLaea
121 107 120 eqeltrd φb1Ne1NreprSMba0..^SLaeSba
122 fveq2 a=SLa=LS
123 fveq2 a=SeSba=eSbS
124 122 123 fveq12d a=SLaeSba=LSeSbS
125 52 a1i φb1Ne1NreprSMb0..^SS=
126 snidg S0SS
127 91 126 syl φb1Ne1NreprSMbSS
128 fvun2 eFn0..^SSbFnS0..^SS=SSeSbS=SbS
129 97 101 125 127 128 syl112anc φb1Ne1NreprSMbeSbS=SbS
130 fvsng S0b1NSbS=b
131 91 99 130 syl2anc φb1Ne1NreprSMbSbS=b
132 129 131 eqtrd φb1Ne1NreprSMbeSbS=b
133 132 fveq2d φb1Ne1NreprSMbLSeSbS=LSb
134 fzonn0p1 S0S0..^S+1
135 2 134 syl φS0..^S+1
136 135 ad2antrr φb1Ne1NreprSMbS0..^S+1
137 6 99 sselid φb1Ne1NreprSMbb
138 fveq2 x=SLx=LS
139 138 fveq1d x=SLxy=LSy
140 139 eleq1d x=SLxyLSy
141 fveq2 y=bLSy=LSb
142 141 eleq1d y=bLSyLSb
143 140 142 rspc2v S0..^S+1bx0..^S+1yLxyLSb
144 136 137 143 syl2anc φb1Ne1NreprSMbx0..^S+1yLxyLSb
145 108 144 mpd φb1Ne1NreprSMbLSb
146 133 145 eqeltrd φb1Ne1NreprSMbLSeSbS
147 87 88 90 91 92 121 124 146 fprodsplitsn φb1Ne1NreprSMba0..^SSLaeSba=a0..^SLaeSbaLSeSbS
148 107 prodeq2dv φb1Ne1NreprSMba0..^SLaeSba=a0..^SLaea
149 148 133 oveq12d φb1Ne1NreprSMba0..^SLaeSbaLSeSbS=a0..^SLaeaLSb
150 86 147 149 3eqtrd φb1Ne1NreprSMba0..^S+1LaeSba=a0..^SLaeaLSb
151 150 sumeq2dv φb1Ne1NreprSMba0..^S+1LaeSba=e1NreprSMba0..^SLaeaLSb
152 simpl d=eSba0..^S+1d=eSb
153 152 fveq1d d=eSba0..^S+1da=eSba
154 153 fveq2d d=eSba0..^S+1Lada=LaeSba
155 154 prodeq2dv d=eSba0..^S+1Lada=a0..^S+1LaeSba
156 28 29 2 31 9 actfunsnf1o φb1Nv1NreprSMbvSb:1NreprSMb1-1 ontoranv1NreprSMbvSb
157 9 a1i φb1Ne1NreprSMbv1NreprSMbvSb=v1NreprSMbvSb
158 simpr φb1Ne1NreprSMbv=ev=e
159 158 uneq1d φb1Ne1NreprSMbv=evSb=eSb
160 vex eV
161 160 66 unex eSbV
162 161 a1i φb1Ne1NreprSMbeSbV
163 157 159 95 162 fvmptd φb1Ne1NreprSMbv1NreprSMbvSbe=eSb
164 155 21 156 163 82 fsumf1o φb1Ndranv1NreprSMbvSba0..^S+1Lada=e1NreprSMba0..^S+1LaeSba
165 simpl d=ea0..^Sd=e
166 165 fveq1d d=ea0..^Sda=ea
167 166 fveq2d d=ea0..^SLada=Laea
168 167 prodeq2dv d=ea0..^SLada=a0..^SLaea
169 168 oveq1d d=ea0..^SLadaLSb=a0..^SLaeaLSb
170 169 cbvsumv d1NreprSMba0..^SLadaLSb=e1NreprSMba0..^SLaeaLSb
171 170 a1i φb1Nd1NreprSMba0..^SLadaLSb=e1NreprSMba0..^SLaeaLSb
172 151 164 171 3eqtr4d φb1Ndranv1NreprSMbvSba0..^S+1Lada=d1NreprSMba0..^SLadaLSb
173 172 sumeq2dv φb=1Ndranv1NreprSMbvSba0..^S+1Lada=b=1Nd1NreprSMba0..^SLadaLSb
174 11 84 173 3eqtrd φd1NreprS+1Ma0..^S+1Lada=b=1Nd1NreprSMba0..^SLadaLSb