| Step |
Hyp |
Ref |
Expression |
| 1 |
|
actfunsn.1 |
|
| 2 |
|
actfunsn.2 |
|
| 3 |
|
actfunsn.3 |
|
| 4 |
|
actfunsn.4 |
|
| 5 |
|
actfunsn.5 |
|
| 6 |
|
uneq1 |
|
| 7 |
6
|
cbvmptv |
|
| 8 |
5 7
|
eqtri |
|
| 9 |
|
vex |
|
| 10 |
|
snex |
|
| 11 |
9 10
|
unex |
|
| 12 |
11
|
a1i |
|
| 13 |
|
vex |
|
| 14 |
13
|
resex |
|
| 15 |
14
|
a1i |
|
| 16 |
|
rspe |
|
| 17 |
8 11
|
elrnmpti |
|
| 18 |
16 17
|
sylibr |
|
| 19 |
18
|
adantll |
|
| 20 |
|
simpr |
|
| 21 |
20
|
reseq1d |
|
| 22 |
1
|
sselda |
|
| 23 |
|
elmapfn |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
fnsng |
|
| 26 |
3 25
|
sylan |
|
| 27 |
26
|
adantr |
|
| 28 |
|
disjsn |
|
| 29 |
4 28
|
sylibr |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
adantr |
|
| 32 |
|
fnunres1 |
|
| 33 |
24 27 31 32
|
syl3anc |
|
| 34 |
33
|
adantr |
|
| 35 |
21 34
|
eqtr2d |
|
| 36 |
19 35
|
jca |
|
| 37 |
36
|
anasss |
|
| 38 |
|
simpr |
|
| 39 |
|
simpr |
|
| 40 |
39
|
reseq1d |
|
| 41 |
1
|
ad3antrrr |
|
| 42 |
|
simplr |
|
| 43 |
41 42
|
sseldd |
|
| 44 |
43 23
|
syl |
|
| 45 |
3
|
ad4antr |
|
| 46 |
|
simp-4r |
|
| 47 |
45 46 25
|
syl2anc |
|
| 48 |
29
|
ad4antr |
|
| 49 |
44 47 48 32
|
syl3anc |
|
| 50 |
49 42
|
eqeltrd |
|
| 51 |
40 50
|
eqeltrd |
|
| 52 |
|
simpr |
|
| 53 |
52 17
|
sylib |
|
| 54 |
51 53
|
r19.29a |
|
| 55 |
54
|
adantr |
|
| 56 |
38 55
|
eqeltrd |
|
| 57 |
38
|
uneq1d |
|
| 58 |
40 49
|
eqtrd |
|
| 59 |
58
|
uneq1d |
|
| 60 |
59 39
|
eqtr4d |
|
| 61 |
60 53
|
r19.29a |
|
| 62 |
61
|
adantr |
|
| 63 |
57 62
|
eqtr2d |
|
| 64 |
56 63
|
jca |
|
| 65 |
64
|
anasss |
|
| 66 |
37 65
|
impbida |
|
| 67 |
8 12 15 66
|
f1od |
|