| Step |
Hyp |
Ref |
Expression |
| 1 |
|
actfunsn.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐴 ⊆ ( 𝐶 ↑m 𝐵 ) ) |
| 2 |
|
actfunsn.2 |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 3 |
|
actfunsn.3 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 4 |
|
actfunsn.4 |
⊢ ( 𝜑 → ¬ 𝐼 ∈ 𝐵 ) |
| 5 |
|
actfunsn.5 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 6 |
|
uneq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∪ { 〈 𝐼 , 𝑘 〉 } ) = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 7 |
6
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 8 |
5 7
|
eqtri |
⊢ 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 9 |
|
vex |
⊢ 𝑧 ∈ V |
| 10 |
|
snex |
⊢ { 〈 𝐼 , 𝑘 〉 } ∈ V |
| 11 |
9 10
|
unex |
⊢ ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ∈ V |
| 12 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ∈ V ) |
| 13 |
|
vex |
⊢ 𝑦 ∈ V |
| 14 |
13
|
resex |
⊢ ( 𝑦 ↾ 𝐵 ) ∈ V |
| 15 |
14
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 ↾ 𝐵 ) ∈ V ) |
| 16 |
|
rspe |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 17 |
8 11
|
elrnmpti |
⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 18 |
16 17
|
sylibr |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑦 ∈ ran 𝐹 ) |
| 19 |
18
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑦 ∈ ran 𝐹 ) |
| 20 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 21 |
20
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( 𝑦 ↾ 𝐵 ) = ( ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ↾ 𝐵 ) ) |
| 22 |
1
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ( 𝐶 ↑m 𝐵 ) ) |
| 23 |
|
elmapfn |
⊢ ( 𝑧 ∈ ( 𝐶 ↑m 𝐵 ) → 𝑧 Fn 𝐵 ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 Fn 𝐵 ) |
| 25 |
|
fnsng |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐶 ) → { 〈 𝐼 , 𝑘 〉 } Fn { 𝐼 } ) |
| 26 |
3 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → { 〈 𝐼 , 𝑘 〉 } Fn { 𝐼 } ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → { 〈 𝐼 , 𝑘 〉 } Fn { 𝐼 } ) |
| 28 |
|
disjsn |
⊢ ( ( 𝐵 ∩ { 𝐼 } ) = ∅ ↔ ¬ 𝐼 ∈ 𝐵 ) |
| 29 |
4 28
|
sylibr |
⊢ ( 𝜑 → ( 𝐵 ∩ { 𝐼 } ) = ∅ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝐵 ∩ { 𝐼 } ) = ∅ ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐵 ∩ { 𝐼 } ) = ∅ ) |
| 32 |
|
fnunres1 |
⊢ ( ( 𝑧 Fn 𝐵 ∧ { 〈 𝐼 , 𝑘 〉 } Fn { 𝐼 } ∧ ( 𝐵 ∩ { 𝐼 } ) = ∅ ) → ( ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ↾ 𝐵 ) = 𝑧 ) |
| 33 |
24 27 31 32
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ↾ 𝐵 ) = 𝑧 ) |
| 34 |
33
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ↾ 𝐵 ) = 𝑧 ) |
| 35 |
21 34
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑧 = ( 𝑦 ↾ 𝐵 ) ) |
| 36 |
19 35
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) ) |
| 37 |
36
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) ) → ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) ) |
| 38 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) → 𝑧 = ( 𝑦 ↾ 𝐵 ) ) |
| 39 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 40 |
39
|
reseq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( 𝑦 ↾ 𝐵 ) = ( ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ↾ 𝐵 ) ) |
| 41 |
1
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝐴 ⊆ ( 𝐶 ↑m 𝐵 ) ) |
| 42 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑧 ∈ 𝐴 ) |
| 43 |
41 42
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑧 ∈ ( 𝐶 ↑m 𝐵 ) ) |
| 44 |
43 23
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑧 Fn 𝐵 ) |
| 45 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝐼 ∈ 𝑉 ) |
| 46 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → 𝑘 ∈ 𝐶 ) |
| 47 |
45 46 25
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → { 〈 𝐼 , 𝑘 〉 } Fn { 𝐼 } ) |
| 48 |
29
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( 𝐵 ∩ { 𝐼 } ) = ∅ ) |
| 49 |
44 47 48 32
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ↾ 𝐵 ) = 𝑧 ) |
| 50 |
49 42
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ↾ 𝐵 ) ∈ 𝐴 ) |
| 51 |
40 50
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( 𝑦 ↾ 𝐵 ) ∈ 𝐴 ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 ) |
| 53 |
52 17
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑧 ∈ 𝐴 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 54 |
51 53
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 ↾ 𝐵 ) ∈ 𝐴 ) |
| 55 |
54
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) → ( 𝑦 ↾ 𝐵 ) ∈ 𝐴 ) |
| 56 |
38 55
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) → 𝑧 ∈ 𝐴 ) |
| 57 |
38
|
uneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) → ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) = ( ( 𝑦 ↾ 𝐵 ) ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 58 |
40 49
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( 𝑦 ↾ 𝐵 ) = 𝑧 ) |
| 59 |
58
|
uneq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( ( 𝑦 ↾ 𝐵 ) ∪ { 〈 𝐼 , 𝑘 〉 } ) = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 60 |
59 39
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) → ( ( 𝑦 ↾ 𝐵 ) ∪ { 〈 𝐼 , 𝑘 〉 } ) = 𝑦 ) |
| 61 |
60 53
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ( 𝑦 ↾ 𝐵 ) ∪ { 〈 𝐼 , 𝑘 〉 } ) = 𝑦 ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) → ( ( 𝑦 ↾ 𝐵 ) ∪ { 〈 𝐼 , 𝑘 〉 } ) = 𝑦 ) |
| 63 |
57 62
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) → 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) |
| 64 |
56 63
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ 𝑦 ∈ ran 𝐹 ) ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) → ( 𝑧 ∈ 𝐴 ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) ) |
| 65 |
64
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) ∧ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) ) → ( 𝑧 ∈ 𝐴 ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) ) |
| 66 |
37 65
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 = ( 𝑧 ∪ { 〈 𝐼 , 𝑘 〉 } ) ) ↔ ( 𝑦 ∈ ran 𝐹 ∧ 𝑧 = ( 𝑦 ↾ 𝐵 ) ) ) ) |
| 67 |
8 12 15 66
|
f1od |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |