| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breprexp.n |
|
| 2 |
|
breprexp.s |
|
| 3 |
|
breprexp.z |
|
| 4 |
|
breprexp.h |
|
| 5 |
|
nn0ssre |
|
| 6 |
5
|
a1i |
|
| 7 |
6
|
sselda |
|
| 8 |
|
leid |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
breq1 |
|
| 11 |
|
oveq2 |
|
| 12 |
11
|
prodeq1d |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
oveqd |
|
| 17 |
11
|
prodeq1d |
|
| 18 |
17
|
oveq1d |
|
| 19 |
18
|
adantr |
|
| 20 |
16 19
|
sumeq12dv |
|
| 21 |
20
|
adantr |
|
| 22 |
14 21
|
sumeq12dv |
|
| 23 |
12 22
|
eqeq12d |
|
| 24 |
10 23
|
imbi12d |
|
| 25 |
|
breq1 |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
prodeq1d |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
oveq2d |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
oveqd |
|
| 32 |
26
|
prodeq1d |
|
| 33 |
32
|
oveq1d |
|
| 34 |
33
|
adantr |
|
| 35 |
31 34
|
sumeq12dv |
|
| 36 |
35
|
adantr |
|
| 37 |
29 36
|
sumeq12dv |
|
| 38 |
27 37
|
eqeq12d |
|
| 39 |
25 38
|
imbi12d |
|
| 40 |
|
breq1 |
|
| 41 |
|
oveq2 |
|
| 42 |
41
|
prodeq1d |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
oveq2d |
|
| 45 |
|
fveq2 |
|
| 46 |
45
|
oveqd |
|
| 47 |
41
|
prodeq1d |
|
| 48 |
47
|
oveq1d |
|
| 49 |
48
|
adantr |
|
| 50 |
46 49
|
sumeq12dv |
|
| 51 |
50
|
adantr |
|
| 52 |
44 51
|
sumeq12dv |
|
| 53 |
42 52
|
eqeq12d |
|
| 54 |
40 53
|
imbi12d |
|
| 55 |
|
breq1 |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
prodeq1d |
|
| 58 |
|
oveq1 |
|
| 59 |
58
|
oveq2d |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
oveqd |
|
| 62 |
56
|
prodeq1d |
|
| 63 |
62
|
oveq1d |
|
| 64 |
63
|
adantr |
|
| 65 |
61 64
|
sumeq12dv |
|
| 66 |
65
|
adantr |
|
| 67 |
59 66
|
sumeq12dv |
|
| 68 |
57 67
|
eqeq12d |
|
| 69 |
55 68
|
imbi12d |
|
| 70 |
|
0nn0 |
|
| 71 |
|
fz1ssnn |
|
| 72 |
71
|
a1i |
|
| 73 |
|
0zd |
|
| 74 |
72 73 1
|
repr0 |
|
| 75 |
|
eqid |
|
| 76 |
75
|
iftruei |
|
| 77 |
74 76
|
eqtrdi |
|
| 78 |
|
snfi |
|
| 79 |
77 78
|
eqeltrdi |
|
| 80 |
|
fzo0 |
|
| 81 |
80
|
prodeq1i |
|
| 82 |
|
prod0 |
|
| 83 |
81 82
|
eqtri |
|
| 84 |
83
|
a1i |
|
| 85 |
|
exp0 |
|
| 86 |
3 85
|
syl |
|
| 87 |
84 86
|
oveq12d |
|
| 88 |
|
ax-1cn |
|
| 89 |
88
|
mulridi |
|
| 90 |
87 89
|
eqtrdi |
|
| 91 |
90 88
|
eqeltrdi |
|
| 92 |
91
|
adantr |
|
| 93 |
79 92
|
fsumcl |
|
| 94 |
|
oveq2 |
|
| 95 |
|
simpl |
|
| 96 |
95
|
oveq2d |
|
| 97 |
96
|
oveq2d |
|
| 98 |
94 97
|
sumeq12dv |
|
| 99 |
98
|
sumsn |
|
| 100 |
70 93 99
|
sylancr |
|
| 101 |
77
|
sumeq1d |
|
| 102 |
|
0ex |
|
| 103 |
80
|
prodeq1i |
|
| 104 |
|
prod0 |
|
| 105 |
103 104
|
eqtri |
|
| 106 |
105
|
a1i |
|
| 107 |
106 88
|
eqeltrdi |
|
| 108 |
86 88
|
eqeltrdi |
|
| 109 |
107 108
|
mulcld |
|
| 110 |
|
fveq1 |
|
| 111 |
110
|
fveq2d |
|
| 112 |
111
|
ralrimivw |
|
| 113 |
112
|
prodeq2d |
|
| 114 |
113
|
oveq1d |
|
| 115 |
114
|
sumsn |
|
| 116 |
102 109 115
|
sylancr |
|
| 117 |
106 86
|
oveq12d |
|
| 118 |
117 87 90
|
3eqtr2d |
|
| 119 |
116 118
|
eqtrd |
|
| 120 |
100 101 119
|
3eqtrd |
|
| 121 |
1
|
nn0cnd |
|
| 122 |
121
|
mul02d |
|
| 123 |
122
|
oveq2d |
|
| 124 |
|
fz0sn |
|
| 125 |
123 124
|
eqtrdi |
|
| 126 |
125
|
sumeq1d |
|
| 127 |
80
|
prodeq1i |
|
| 128 |
|
prod0 |
|
| 129 |
127 128
|
eqtri |
|
| 130 |
129
|
a1i |
|
| 131 |
120 126 130
|
3eqtr4rd |
|
| 132 |
131
|
a1d |
|
| 133 |
|
simpll |
|
| 134 |
|
simplr |
|
| 135 |
|
oveq2 |
|
| 136 |
|
oveq2 |
|
| 137 |
136
|
oveq2d |
|
| 138 |
137
|
adantr |
|
| 139 |
135 138
|
sumeq12dv |
|
| 140 |
139
|
cbvsumv |
|
| 141 |
140
|
eqeq2i |
|
| 142 |
|
simpl |
|
| 143 |
142
|
fveq2d |
|
| 144 |
143
|
fveq1d |
|
| 145 |
144
|
oveq1d |
|
| 146 |
145
|
sumeq2dv |
|
| 147 |
146
|
cbvprodv |
|
| 148 |
|
fveq2 |
|
| 149 |
|
oveq2 |
|
| 150 |
148 149
|
oveq12d |
|
| 151 |
150
|
cbvsumv |
|
| 152 |
151
|
a1i |
|
| 153 |
152
|
prodeq2i |
|
| 154 |
147 153
|
eqtri |
|
| 155 |
|
fveq2 |
|
| 156 |
|
fveq2 |
|
| 157 |
155 156
|
fveq12d |
|
| 158 |
157
|
cbvprodv |
|
| 159 |
158
|
oveq1i |
|
| 160 |
159
|
a1i |
|
| 161 |
160
|
sumeq2i |
|
| 162 |
|
simpl |
|
| 163 |
162
|
fveq1d |
|
| 164 |
163
|
fveq2d |
|
| 165 |
164
|
prodeq2dv |
|
| 166 |
165
|
oveq1d |
|
| 167 |
166
|
cbvsumv |
|
| 168 |
161 167
|
eqtri |
|
| 169 |
168
|
a1i |
|
| 170 |
169
|
sumeq2i |
|
| 171 |
154 170
|
eqeq12i |
|
| 172 |
141 171
|
bitri |
|
| 173 |
172
|
imbi2i |
|
| 174 |
134 173
|
sylib |
|
| 175 |
|
simpr |
|
| 176 |
1
|
ad3antrrr |
|
| 177 |
2
|
ad3antrrr |
|
| 178 |
3
|
ad3antrrr |
|
| 179 |
4
|
ad3antrrr |
|
| 180 |
|
simpllr |
|
| 181 |
|
simpr |
|
| 182 |
5 180
|
sselid |
|
| 183 |
|
1red |
|
| 184 |
182 183
|
readdcld |
|
| 185 |
5 177
|
sselid |
|
| 186 |
182
|
ltp1d |
|
| 187 |
182 184 186
|
ltled |
|
| 188 |
182 184 185 187 181
|
letrd |
|
| 189 |
|
simplr |
|
| 190 |
189 173
|
sylibr |
|
| 191 |
188 190
|
mpd |
|
| 192 |
176 177 178 179 180 181 191
|
breprexplemc |
|
| 193 |
133 174 175 192
|
syl21anc |
|
| 194 |
193
|
ex |
|
| 195 |
24 39 54 69 132 194
|
nn0indd |
|
| 196 |
9 195
|
mpd |
|
| 197 |
2 196
|
mpdan |
|