| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|
| 2 |
|
reprval.m |
|
| 3 |
|
reprval.s |
|
| 4 |
|
0nn0 |
|
| 5 |
4
|
a1i |
|
| 6 |
1 2 5
|
reprval |
|
| 7 |
|
fzo0 |
|
| 8 |
7
|
sumeq1i |
|
| 9 |
|
sum0 |
|
| 10 |
8 9
|
eqtri |
|
| 11 |
10
|
eqeq1i |
|
| 12 |
11
|
a1i |
|
| 13 |
|
0ex |
|
| 14 |
13
|
snid |
|
| 15 |
|
nnex |
|
| 16 |
15
|
a1i |
|
| 17 |
16 1
|
ssexd |
|
| 18 |
|
mapdm0 |
|
| 19 |
17 18
|
syl |
|
| 20 |
14 19
|
eleqtrrid |
|
| 21 |
7
|
oveq2i |
|
| 22 |
20 21
|
eleqtrrdi |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
24
|
eqcomd |
|
| 26 |
21 19
|
eqtrid |
|
| 27 |
26
|
eleq2d |
|
| 28 |
27
|
biimpa |
|
| 29 |
|
elsni |
|
| 30 |
28 29
|
syl |
|
| 31 |
30
|
ad4ant13 |
|
| 32 |
12 23 25 31
|
rabeqsnd |
|
| 33 |
32
|
eqcomd |
|
| 34 |
10
|
a1i |
|
| 35 |
|
simplr |
|
| 36 |
35
|
neqned |
|
| 37 |
36
|
necomd |
|
| 38 |
34 37
|
eqnetrd |
|
| 39 |
38
|
neneqd |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
rabeq0 |
|
| 42 |
40 41
|
sylibr |
|
| 43 |
42
|
eqcomd |
|
| 44 |
33 43
|
ifeqda |
|
| 45 |
6 44
|
eqtr4d |
|