| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breprexp.n |
|- ( ph -> N e. NN0 ) |
| 2 |
|
breprexp.s |
|- ( ph -> S e. NN0 ) |
| 3 |
|
breprexp.z |
|- ( ph -> Z e. CC ) |
| 4 |
|
breprexp.h |
|- ( ph -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 5 |
|
nn0ssre |
|- NN0 C_ RR |
| 6 |
5
|
a1i |
|- ( ph -> NN0 C_ RR ) |
| 7 |
6
|
sselda |
|- ( ( ph /\ S e. NN0 ) -> S e. RR ) |
| 8 |
|
leid |
|- ( S e. RR -> S <_ S ) |
| 9 |
7 8
|
syl |
|- ( ( ph /\ S e. NN0 ) -> S <_ S ) |
| 10 |
|
breq1 |
|- ( t = 0 -> ( t <_ S <-> 0 <_ S ) ) |
| 11 |
|
oveq2 |
|- ( t = 0 -> ( 0 ..^ t ) = ( 0 ..^ 0 ) ) |
| 12 |
11
|
prodeq1d |
|- ( t = 0 -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) ) |
| 13 |
|
oveq1 |
|- ( t = 0 -> ( t x. N ) = ( 0 x. N ) ) |
| 14 |
13
|
oveq2d |
|- ( t = 0 -> ( 0 ... ( t x. N ) ) = ( 0 ... ( 0 x. N ) ) ) |
| 15 |
|
fveq2 |
|- ( t = 0 -> ( repr ` t ) = ( repr ` 0 ) ) |
| 16 |
15
|
oveqd |
|- ( t = 0 -> ( ( 1 ... N ) ( repr ` t ) m ) = ( ( 1 ... N ) ( repr ` 0 ) m ) ) |
| 17 |
11
|
prodeq1d |
|- ( t = 0 -> prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) ) |
| 18 |
17
|
oveq1d |
|- ( t = 0 -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 19 |
18
|
adantr |
|- ( ( t = 0 /\ c e. ( ( 1 ... N ) ( repr ` t ) m ) ) -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 20 |
16 19
|
sumeq12dv |
|- ( t = 0 -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 21 |
20
|
adantr |
|- ( ( t = 0 /\ m e. ( 0 ... ( t x. N ) ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 22 |
14 21
|
sumeq12dv |
|- ( t = 0 -> sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ m e. ( 0 ... ( 0 x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 23 |
12 22
|
eqeq12d |
|- ( t = 0 -> ( prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) <-> prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( 0 x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 24 |
10 23
|
imbi12d |
|- ( t = 0 -> ( ( t <_ S -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) <-> ( 0 <_ S -> prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( 0 x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) ) |
| 25 |
|
breq1 |
|- ( t = s -> ( t <_ S <-> s <_ S ) ) |
| 26 |
|
oveq2 |
|- ( t = s -> ( 0 ..^ t ) = ( 0 ..^ s ) ) |
| 27 |
26
|
prodeq1d |
|- ( t = s -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) ) |
| 28 |
|
oveq1 |
|- ( t = s -> ( t x. N ) = ( s x. N ) ) |
| 29 |
28
|
oveq2d |
|- ( t = s -> ( 0 ... ( t x. N ) ) = ( 0 ... ( s x. N ) ) ) |
| 30 |
|
fveq2 |
|- ( t = s -> ( repr ` t ) = ( repr ` s ) ) |
| 31 |
30
|
oveqd |
|- ( t = s -> ( ( 1 ... N ) ( repr ` t ) m ) = ( ( 1 ... N ) ( repr ` s ) m ) ) |
| 32 |
26
|
prodeq1d |
|- ( t = s -> prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) ) |
| 33 |
32
|
oveq1d |
|- ( t = s -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 34 |
33
|
adantr |
|- ( ( t = s /\ c e. ( ( 1 ... N ) ( repr ` t ) m ) ) -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 35 |
31 34
|
sumeq12dv |
|- ( t = s -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 36 |
35
|
adantr |
|- ( ( t = s /\ m e. ( 0 ... ( t x. N ) ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 37 |
29 36
|
sumeq12dv |
|- ( t = s -> sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 38 |
27 37
|
eqeq12d |
|- ( t = s -> ( prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) <-> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 39 |
25 38
|
imbi12d |
|- ( t = s -> ( ( t <_ S -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) <-> ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) ) |
| 40 |
|
breq1 |
|- ( t = ( s + 1 ) -> ( t <_ S <-> ( s + 1 ) <_ S ) ) |
| 41 |
|
oveq2 |
|- ( t = ( s + 1 ) -> ( 0 ..^ t ) = ( 0 ..^ ( s + 1 ) ) ) |
| 42 |
41
|
prodeq1d |
|- ( t = ( s + 1 ) -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ a e. ( 0 ..^ ( s + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) ) |
| 43 |
|
oveq1 |
|- ( t = ( s + 1 ) -> ( t x. N ) = ( ( s + 1 ) x. N ) ) |
| 44 |
43
|
oveq2d |
|- ( t = ( s + 1 ) -> ( 0 ... ( t x. N ) ) = ( 0 ... ( ( s + 1 ) x. N ) ) ) |
| 45 |
|
fveq2 |
|- ( t = ( s + 1 ) -> ( repr ` t ) = ( repr ` ( s + 1 ) ) ) |
| 46 |
45
|
oveqd |
|- ( t = ( s + 1 ) -> ( ( 1 ... N ) ( repr ` t ) m ) = ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ) |
| 47 |
41
|
prodeq1d |
|- ( t = ( s + 1 ) -> prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) ) |
| 48 |
47
|
oveq1d |
|- ( t = ( s + 1 ) -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 49 |
48
|
adantr |
|- ( ( t = ( s + 1 ) /\ c e. ( ( 1 ... N ) ( repr ` t ) m ) ) -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 50 |
46 49
|
sumeq12dv |
|- ( t = ( s + 1 ) -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 51 |
50
|
adantr |
|- ( ( t = ( s + 1 ) /\ m e. ( 0 ... ( t x. N ) ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 52 |
44 51
|
sumeq12dv |
|- ( t = ( s + 1 ) -> sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ m e. ( 0 ... ( ( s + 1 ) x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 53 |
42 52
|
eqeq12d |
|- ( t = ( s + 1 ) -> ( prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) <-> prod_ a e. ( 0 ..^ ( s + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( ( s + 1 ) x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 54 |
40 53
|
imbi12d |
|- ( t = ( s + 1 ) -> ( ( t <_ S -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) <-> ( ( s + 1 ) <_ S -> prod_ a e. ( 0 ..^ ( s + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( ( s + 1 ) x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) ) |
| 55 |
|
breq1 |
|- ( t = S -> ( t <_ S <-> S <_ S ) ) |
| 56 |
|
oveq2 |
|- ( t = S -> ( 0 ..^ t ) = ( 0 ..^ S ) ) |
| 57 |
56
|
prodeq1d |
|- ( t = S -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) ) |
| 58 |
|
oveq1 |
|- ( t = S -> ( t x. N ) = ( S x. N ) ) |
| 59 |
58
|
oveq2d |
|- ( t = S -> ( 0 ... ( t x. N ) ) = ( 0 ... ( S x. N ) ) ) |
| 60 |
|
fveq2 |
|- ( t = S -> ( repr ` t ) = ( repr ` S ) ) |
| 61 |
60
|
oveqd |
|- ( t = S -> ( ( 1 ... N ) ( repr ` t ) m ) = ( ( 1 ... N ) ( repr ` S ) m ) ) |
| 62 |
56
|
prodeq1d |
|- ( t = S -> prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) ) |
| 63 |
62
|
oveq1d |
|- ( t = S -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 64 |
63
|
adantr |
|- ( ( t = S /\ c e. ( ( 1 ... N ) ( repr ` t ) m ) ) -> ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 65 |
61 64
|
sumeq12dv |
|- ( t = S -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 66 |
65
|
adantr |
|- ( ( t = S /\ m e. ( 0 ... ( t x. N ) ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 67 |
59 66
|
sumeq12dv |
|- ( t = S -> sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 68 |
57 67
|
eqeq12d |
|- ( t = S -> ( prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) <-> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 69 |
55 68
|
imbi12d |
|- ( t = S -> ( ( t <_ S -> prod_ a e. ( 0 ..^ t ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( t x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` t ) m ) ( prod_ a e. ( 0 ..^ t ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) <-> ( S <_ S -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) ) |
| 70 |
|
0nn0 |
|- 0 e. NN0 |
| 71 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 72 |
71
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN ) |
| 73 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 74 |
72 73 1
|
repr0 |
|- ( ph -> ( ( 1 ... N ) ( repr ` 0 ) 0 ) = if ( 0 = 0 , { (/) } , (/) ) ) |
| 75 |
|
eqid |
|- 0 = 0 |
| 76 |
75
|
iftruei |
|- if ( 0 = 0 , { (/) } , (/) ) = { (/) } |
| 77 |
74 76
|
eqtrdi |
|- ( ph -> ( ( 1 ... N ) ( repr ` 0 ) 0 ) = { (/) } ) |
| 78 |
|
snfi |
|- { (/) } e. Fin |
| 79 |
77 78
|
eqeltrdi |
|- ( ph -> ( ( 1 ... N ) ( repr ` 0 ) 0 ) e. Fin ) |
| 80 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 81 |
80
|
prodeq1i |
|- prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) = prod_ a e. (/) ( ( L ` a ) ` ( c ` a ) ) |
| 82 |
|
prod0 |
|- prod_ a e. (/) ( ( L ` a ) ` ( c ` a ) ) = 1 |
| 83 |
81 82
|
eqtri |
|- prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) = 1 |
| 84 |
83
|
a1i |
|- ( ph -> prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) = 1 ) |
| 85 |
|
exp0 |
|- ( Z e. CC -> ( Z ^ 0 ) = 1 ) |
| 86 |
3 85
|
syl |
|- ( ph -> ( Z ^ 0 ) = 1 ) |
| 87 |
84 86
|
oveq12d |
|- ( ph -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) = ( 1 x. 1 ) ) |
| 88 |
|
ax-1cn |
|- 1 e. CC |
| 89 |
88
|
mulridi |
|- ( 1 x. 1 ) = 1 |
| 90 |
87 89
|
eqtrdi |
|- ( ph -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) = 1 ) |
| 91 |
90 88
|
eqeltrdi |
|- ( ph -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) e. CC ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ c e. ( ( 1 ... N ) ( repr ` 0 ) 0 ) ) -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) e. CC ) |
| 93 |
79 92
|
fsumcl |
|- ( ph -> sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) 0 ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) e. CC ) |
| 94 |
|
oveq2 |
|- ( m = 0 -> ( ( 1 ... N ) ( repr ` 0 ) m ) = ( ( 1 ... N ) ( repr ` 0 ) 0 ) ) |
| 95 |
|
simpl |
|- ( ( m = 0 /\ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ) -> m = 0 ) |
| 96 |
95
|
oveq2d |
|- ( ( m = 0 /\ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ) -> ( Z ^ m ) = ( Z ^ 0 ) ) |
| 97 |
96
|
oveq2d |
|- ( ( m = 0 /\ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ) -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) ) |
| 98 |
94 97
|
sumeq12dv |
|- ( m = 0 -> sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) 0 ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) ) |
| 99 |
98
|
sumsn |
|- ( ( 0 e. NN0 /\ sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) 0 ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) e. CC ) -> sum_ m e. { 0 } sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) 0 ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) ) |
| 100 |
70 93 99
|
sylancr |
|- ( ph -> sum_ m e. { 0 } sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) 0 ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) ) |
| 101 |
77
|
sumeq1d |
|- ( ph -> sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) 0 ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) = sum_ c e. { (/) } ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) ) |
| 102 |
|
0ex |
|- (/) e. _V |
| 103 |
80
|
prodeq1i |
|- prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) = prod_ a e. (/) ( ( L ` a ) ` ( (/) ` a ) ) |
| 104 |
|
prod0 |
|- prod_ a e. (/) ( ( L ` a ) ` ( (/) ` a ) ) = 1 |
| 105 |
103 104
|
eqtri |
|- prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) = 1 |
| 106 |
105
|
a1i |
|- ( ph -> prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) = 1 ) |
| 107 |
106 88
|
eqeltrdi |
|- ( ph -> prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) e. CC ) |
| 108 |
86 88
|
eqeltrdi |
|- ( ph -> ( Z ^ 0 ) e. CC ) |
| 109 |
107 108
|
mulcld |
|- ( ph -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) x. ( Z ^ 0 ) ) e. CC ) |
| 110 |
|
fveq1 |
|- ( c = (/) -> ( c ` a ) = ( (/) ` a ) ) |
| 111 |
110
|
fveq2d |
|- ( c = (/) -> ( ( L ` a ) ` ( c ` a ) ) = ( ( L ` a ) ` ( (/) ` a ) ) ) |
| 112 |
111
|
ralrimivw |
|- ( c = (/) -> A. a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) = ( ( L ` a ) ` ( (/) ` a ) ) ) |
| 113 |
112
|
prodeq2d |
|- ( c = (/) -> prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) ) |
| 114 |
113
|
oveq1d |
|- ( c = (/) -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) = ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) x. ( Z ^ 0 ) ) ) |
| 115 |
114
|
sumsn |
|- ( ( (/) e. _V /\ ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) x. ( Z ^ 0 ) ) e. CC ) -> sum_ c e. { (/) } ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) = ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) x. ( Z ^ 0 ) ) ) |
| 116 |
102 109 115
|
sylancr |
|- ( ph -> sum_ c e. { (/) } ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) = ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) x. ( Z ^ 0 ) ) ) |
| 117 |
106 86
|
oveq12d |
|- ( ph -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) x. ( Z ^ 0 ) ) = ( 1 x. 1 ) ) |
| 118 |
117 87 90
|
3eqtr2d |
|- ( ph -> ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( (/) ` a ) ) x. ( Z ^ 0 ) ) = 1 ) |
| 119 |
116 118
|
eqtrd |
|- ( ph -> sum_ c e. { (/) } ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ 0 ) ) = 1 ) |
| 120 |
100 101 119
|
3eqtrd |
|- ( ph -> sum_ m e. { 0 } sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = 1 ) |
| 121 |
1
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 122 |
121
|
mul02d |
|- ( ph -> ( 0 x. N ) = 0 ) |
| 123 |
122
|
oveq2d |
|- ( ph -> ( 0 ... ( 0 x. N ) ) = ( 0 ... 0 ) ) |
| 124 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
| 125 |
123 124
|
eqtrdi |
|- ( ph -> ( 0 ... ( 0 x. N ) ) = { 0 } ) |
| 126 |
125
|
sumeq1d |
|- ( ph -> sum_ m e. ( 0 ... ( 0 x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ m e. { 0 } sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 127 |
80
|
prodeq1i |
|- prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ a e. (/) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) |
| 128 |
|
prod0 |
|- prod_ a e. (/) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = 1 |
| 129 |
127 128
|
eqtri |
|- prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = 1 |
| 130 |
129
|
a1i |
|- ( ph -> prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = 1 ) |
| 131 |
120 126 130
|
3eqtr4rd |
|- ( ph -> prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( 0 x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 132 |
131
|
a1d |
|- ( ph -> ( 0 <_ S -> prod_ a e. ( 0 ..^ 0 ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( 0 x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` 0 ) m ) ( prod_ a e. ( 0 ..^ 0 ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 133 |
|
simpll |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( ph /\ s e. NN0 ) ) |
| 134 |
|
simplr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 135 |
|
oveq2 |
|- ( m = n -> ( ( 1 ... N ) ( repr ` s ) m ) = ( ( 1 ... N ) ( repr ` s ) n ) ) |
| 136 |
|
oveq2 |
|- ( m = n -> ( Z ^ m ) = ( Z ^ n ) ) |
| 137 |
136
|
oveq2d |
|- ( m = n -> ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) ) |
| 138 |
137
|
adantr |
|- ( ( m = n /\ c e. ( ( 1 ... N ) ( repr ` s ) m ) ) -> ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) ) |
| 139 |
135 138
|
sumeq12dv |
|- ( m = n -> sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) ) |
| 140 |
139
|
cbvsumv |
|- sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) |
| 141 |
140
|
eqeq2i |
|- ( prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) <-> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) ) |
| 142 |
|
simpl |
|- ( ( a = i /\ b e. ( 1 ... N ) ) -> a = i ) |
| 143 |
142
|
fveq2d |
|- ( ( a = i /\ b e. ( 1 ... N ) ) -> ( L ` a ) = ( L ` i ) ) |
| 144 |
143
|
fveq1d |
|- ( ( a = i /\ b e. ( 1 ... N ) ) -> ( ( L ` a ) ` b ) = ( ( L ` i ) ` b ) ) |
| 145 |
144
|
oveq1d |
|- ( ( a = i /\ b e. ( 1 ... N ) ) -> ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = ( ( ( L ` i ) ` b ) x. ( Z ^ b ) ) ) |
| 146 |
145
|
sumeq2dv |
|- ( a = i -> sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ b e. ( 1 ... N ) ( ( ( L ` i ) ` b ) x. ( Z ^ b ) ) ) |
| 147 |
146
|
cbvprodv |
|- prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ i e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` i ) ` b ) x. ( Z ^ b ) ) |
| 148 |
|
fveq2 |
|- ( b = j -> ( ( L ` i ) ` b ) = ( ( L ` i ) ` j ) ) |
| 149 |
|
oveq2 |
|- ( b = j -> ( Z ^ b ) = ( Z ^ j ) ) |
| 150 |
148 149
|
oveq12d |
|- ( b = j -> ( ( ( L ` i ) ` b ) x. ( Z ^ b ) ) = ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) ) |
| 151 |
150
|
cbvsumv |
|- sum_ b e. ( 1 ... N ) ( ( ( L ` i ) ` b ) x. ( Z ^ b ) ) = sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) |
| 152 |
151
|
a1i |
|- ( i e. ( 0 ..^ s ) -> sum_ b e. ( 1 ... N ) ( ( ( L ` i ) ` b ) x. ( Z ^ b ) ) = sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) ) |
| 153 |
152
|
prodeq2i |
|- prod_ i e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` i ) ` b ) x. ( Z ^ b ) ) = prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) |
| 154 |
147 153
|
eqtri |
|- prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) |
| 155 |
|
fveq2 |
|- ( a = i -> ( L ` a ) = ( L ` i ) ) |
| 156 |
|
fveq2 |
|- ( a = i -> ( c ` a ) = ( c ` i ) ) |
| 157 |
155 156
|
fveq12d |
|- ( a = i -> ( ( L ` a ) ` ( c ` a ) ) = ( ( L ` i ) ` ( c ` i ) ) ) |
| 158 |
157
|
cbvprodv |
|- prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) = prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( c ` i ) ) |
| 159 |
158
|
oveq1i |
|- ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) = ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( c ` i ) ) x. ( Z ^ n ) ) |
| 160 |
159
|
a1i |
|- ( c e. ( ( 1 ... N ) ( repr ` s ) n ) -> ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) = ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( c ` i ) ) x. ( Z ^ n ) ) ) |
| 161 |
160
|
sumeq2i |
|- sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( c ` i ) ) x. ( Z ^ n ) ) |
| 162 |
|
simpl |
|- ( ( c = k /\ i e. ( 0 ..^ s ) ) -> c = k ) |
| 163 |
162
|
fveq1d |
|- ( ( c = k /\ i e. ( 0 ..^ s ) ) -> ( c ` i ) = ( k ` i ) ) |
| 164 |
163
|
fveq2d |
|- ( ( c = k /\ i e. ( 0 ..^ s ) ) -> ( ( L ` i ) ` ( c ` i ) ) = ( ( L ` i ) ` ( k ` i ) ) ) |
| 165 |
164
|
prodeq2dv |
|- ( c = k -> prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( c ` i ) ) = prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) ) |
| 166 |
165
|
oveq1d |
|- ( c = k -> ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( c ` i ) ) x. ( Z ^ n ) ) = ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) |
| 167 |
166
|
cbvsumv |
|- sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( c ` i ) ) x. ( Z ^ n ) ) = sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) |
| 168 |
161 167
|
eqtri |
|- sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) = sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) |
| 169 |
168
|
a1i |
|- ( n e. ( 0 ... ( s x. N ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) = sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) |
| 170 |
169
|
sumeq2i |
|- sum_ n e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) |
| 171 |
154 170
|
eqeq12i |
|- ( prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ n ) ) <-> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) |
| 172 |
141 171
|
bitri |
|- ( prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) <-> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) |
| 173 |
172
|
imbi2i |
|- ( ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) <-> ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) |
| 174 |
134 173
|
sylib |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) |
| 175 |
|
simpr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( s + 1 ) <_ S ) |
| 176 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> N e. NN0 ) |
| 177 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> S e. NN0 ) |
| 178 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> Z e. CC ) |
| 179 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 180 |
|
simpllr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> s e. NN0 ) |
| 181 |
|
simpr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( s + 1 ) <_ S ) |
| 182 |
5 180
|
sselid |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> s e. RR ) |
| 183 |
|
1red |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> 1 e. RR ) |
| 184 |
182 183
|
readdcld |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( s + 1 ) e. RR ) |
| 185 |
5 177
|
sselid |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> S e. RR ) |
| 186 |
182
|
ltp1d |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> s < ( s + 1 ) ) |
| 187 |
182 184 186
|
ltled |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> s <_ ( s + 1 ) ) |
| 188 |
182 184 185 187 181
|
letrd |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> s <_ S ) |
| 189 |
|
simplr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) |
| 190 |
189 173
|
sylibr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 191 |
188 190
|
mpd |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 192 |
176 177 178 179 180 181 191
|
breprexplemc |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ i e. ( 0 ..^ s ) sum_ j e. ( 1 ... N ) ( ( ( L ` i ) ` j ) x. ( Z ^ j ) ) = sum_ n e. ( 0 ... ( s x. N ) ) sum_ k e. ( ( 1 ... N ) ( repr ` s ) n ) ( prod_ i e. ( 0 ..^ s ) ( ( L ` i ) ` ( k ` i ) ) x. ( Z ^ n ) ) ) ) /\ ( s + 1 ) <_ S ) -> prod_ a e. ( 0 ..^ ( s + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( ( s + 1 ) x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 193 |
133 174 175 192
|
syl21anc |
|- ( ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) /\ ( s + 1 ) <_ S ) -> prod_ a e. ( 0 ..^ ( s + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( ( s + 1 ) x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 194 |
193
|
ex |
|- ( ( ( ph /\ s e. NN0 ) /\ ( s <_ S -> prod_ a e. ( 0 ..^ s ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( s x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` s ) m ) ( prod_ a e. ( 0 ..^ s ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) -> ( ( s + 1 ) <_ S -> prod_ a e. ( 0 ..^ ( s + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( ( s + 1 ) x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` ( s + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( s + 1 ) ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 195 |
24 39 54 69 132 194
|
nn0indd |
|- ( ( ph /\ S e. NN0 ) -> ( S <_ S -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) ) |
| 196 |
9 195
|
mpd |
|- ( ( ph /\ S e. NN0 ) -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
| 197 |
2 196
|
mpdan |
|- ( ph -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |