Step |
Hyp |
Ref |
Expression |
1 |
|
breprexp.n |
|- ( ph -> N e. NN0 ) |
2 |
|
breprexp.s |
|- ( ph -> S e. NN0 ) |
3 |
|
breprexp.z |
|- ( ph -> Z e. CC ) |
4 |
|
breprexpnat.a |
|- ( ph -> A C_ NN ) |
5 |
|
breprexpnat.p |
|- P = sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) |
6 |
|
breprexpnat.r |
|- R = ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) |
7 |
|
fvex |
|- ( ( _Ind ` NN ) ` A ) e. _V |
8 |
7
|
fconst |
|- ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) : ( 0 ..^ S ) --> { ( ( _Ind ` NN ) ` A ) } |
9 |
|
nnex |
|- NN e. _V |
10 |
|
indf |
|- ( ( NN e. _V /\ A C_ NN ) -> ( ( _Ind ` NN ) ` A ) : NN --> { 0 , 1 } ) |
11 |
9 4 10
|
sylancr |
|- ( ph -> ( ( _Ind ` NN ) ` A ) : NN --> { 0 , 1 } ) |
12 |
|
0cn |
|- 0 e. CC |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
prssi |
|- ( ( 0 e. CC /\ 1 e. CC ) -> { 0 , 1 } C_ CC ) |
15 |
12 13 14
|
mp2an |
|- { 0 , 1 } C_ CC |
16 |
|
fss |
|- ( ( ( ( _Ind ` NN ) ` A ) : NN --> { 0 , 1 } /\ { 0 , 1 } C_ CC ) -> ( ( _Ind ` NN ) ` A ) : NN --> CC ) |
17 |
11 15 16
|
sylancl |
|- ( ph -> ( ( _Ind ` NN ) ` A ) : NN --> CC ) |
18 |
|
cnex |
|- CC e. _V |
19 |
18 9
|
elmap |
|- ( ( ( _Ind ` NN ) ` A ) e. ( CC ^m NN ) <-> ( ( _Ind ` NN ) ` A ) : NN --> CC ) |
20 |
17 19
|
sylibr |
|- ( ph -> ( ( _Ind ` NN ) ` A ) e. ( CC ^m NN ) ) |
21 |
7
|
snss |
|- ( ( ( _Ind ` NN ) ` A ) e. ( CC ^m NN ) <-> { ( ( _Ind ` NN ) ` A ) } C_ ( CC ^m NN ) ) |
22 |
20 21
|
sylib |
|- ( ph -> { ( ( _Ind ` NN ) ` A ) } C_ ( CC ^m NN ) ) |
23 |
|
fss |
|- ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) : ( 0 ..^ S ) --> { ( ( _Ind ` NN ) ` A ) } /\ { ( ( _Ind ` NN ) ` A ) } C_ ( CC ^m NN ) ) -> ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
24 |
8 22 23
|
sylancr |
|- ( ph -> ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
25 |
1 2 3 24
|
breprexp |
|- ( ph -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
26 |
7
|
fvconst2 |
|- ( a e. ( 0 ..^ S ) -> ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) = ( ( _Ind ` NN ) ` A ) ) |
27 |
26
|
ad2antlr |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) = ( ( _Ind ` NN ) ` A ) ) |
28 |
27
|
fveq1d |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` b ) = ( ( ( _Ind ` NN ) ` A ) ` b ) ) |
29 |
28
|
oveq1d |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` b ) x. ( Z ^ b ) ) = ( ( ( ( _Ind ` NN ) ` A ) ` b ) x. ( Z ^ b ) ) ) |
30 |
29
|
sumeq2dv |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> sum_ b e. ( 1 ... N ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` b ) x. ( Z ^ b ) ) = sum_ b e. ( 1 ... N ) ( ( ( ( _Ind ` NN ) ` A ) ` b ) x. ( Z ^ b ) ) ) |
31 |
9
|
a1i |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> NN e. _V ) |
32 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
33 |
32
|
a1i |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( 1 ... N ) e. Fin ) |
34 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
35 |
34
|
a1i |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( 1 ... N ) C_ NN ) |
36 |
4
|
adantr |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> A C_ NN ) |
37 |
3
|
ad2antrr |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> Z e. CC ) |
38 |
|
nnssnn0 |
|- NN C_ NN0 |
39 |
34 38
|
sstri |
|- ( 1 ... N ) C_ NN0 |
40 |
|
simpr |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> b e. ( 1 ... N ) ) |
41 |
39 40
|
sselid |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> b e. NN0 ) |
42 |
37 41
|
expcld |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( Z ^ b ) e. CC ) |
43 |
31 33 35 36 42
|
indsumin |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> sum_ b e. ( 1 ... N ) ( ( ( ( _Ind ` NN ) ` A ) ` b ) x. ( Z ^ b ) ) = sum_ b e. ( ( 1 ... N ) i^i A ) ( Z ^ b ) ) |
44 |
|
incom |
|- ( ( 1 ... N ) i^i A ) = ( A i^i ( 1 ... N ) ) |
45 |
44
|
a1i |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( ( 1 ... N ) i^i A ) = ( A i^i ( 1 ... N ) ) ) |
46 |
45
|
sumeq1d |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> sum_ b e. ( ( 1 ... N ) i^i A ) ( Z ^ b ) = sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ) |
47 |
30 43 46
|
3eqtrd |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> sum_ b e. ( 1 ... N ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` b ) x. ( Z ^ b ) ) = sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ) |
48 |
47
|
prodeq2dv |
|- ( ph -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` b ) x. ( Z ^ b ) ) = prod_ a e. ( 0 ..^ S ) sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ) |
49 |
|
fzofi |
|- ( 0 ..^ S ) e. Fin |
50 |
49
|
a1i |
|- ( ph -> ( 0 ..^ S ) e. Fin ) |
51 |
|
inss2 |
|- ( A i^i ( 1 ... N ) ) C_ ( 1 ... N ) |
52 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( A i^i ( 1 ... N ) ) C_ ( 1 ... N ) ) -> ( A i^i ( 1 ... N ) ) e. Fin ) |
53 |
32 51 52
|
mp2an |
|- ( A i^i ( 1 ... N ) ) e. Fin |
54 |
53
|
a1i |
|- ( ph -> ( A i^i ( 1 ... N ) ) e. Fin ) |
55 |
3
|
adantr |
|- ( ( ph /\ b e. ( A i^i ( 1 ... N ) ) ) -> Z e. CC ) |
56 |
51 39
|
sstri |
|- ( A i^i ( 1 ... N ) ) C_ NN0 |
57 |
|
simpr |
|- ( ( ph /\ b e. ( A i^i ( 1 ... N ) ) ) -> b e. ( A i^i ( 1 ... N ) ) ) |
58 |
56 57
|
sselid |
|- ( ( ph /\ b e. ( A i^i ( 1 ... N ) ) ) -> b e. NN0 ) |
59 |
55 58
|
expcld |
|- ( ( ph /\ b e. ( A i^i ( 1 ... N ) ) ) -> ( Z ^ b ) e. CC ) |
60 |
54 59
|
fsumcl |
|- ( ph -> sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) e. CC ) |
61 |
|
fprodconst |
|- ( ( ( 0 ..^ S ) e. Fin /\ sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) e. CC ) -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) = ( sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ^ ( # ` ( 0 ..^ S ) ) ) ) |
62 |
50 60 61
|
syl2anc |
|- ( ph -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) = ( sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ^ ( # ` ( 0 ..^ S ) ) ) ) |
63 |
|
hashfzo0 |
|- ( S e. NN0 -> ( # ` ( 0 ..^ S ) ) = S ) |
64 |
2 63
|
syl |
|- ( ph -> ( # ` ( 0 ..^ S ) ) = S ) |
65 |
64
|
oveq2d |
|- ( ph -> ( sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ^ ( # ` ( 0 ..^ S ) ) ) = ( sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ^ S ) ) |
66 |
48 62 65
|
3eqtrd |
|- ( ph -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` b ) x. ( Z ^ b ) ) = ( sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ^ S ) ) |
67 |
34
|
a1i |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> ( 1 ... N ) C_ NN ) |
68 |
|
fzssz |
|- ( 0 ... ( S x. N ) ) C_ ZZ |
69 |
|
simpr |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> m e. ( 0 ... ( S x. N ) ) ) |
70 |
68 69
|
sselid |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> m e. ZZ ) |
71 |
2
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> S e. NN0 ) |
72 |
32
|
a1i |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> ( 1 ... N ) e. Fin ) |
73 |
67 70 71 72
|
reprfi |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> ( ( 1 ... N ) ( repr ` S ) m ) e. Fin ) |
74 |
3
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> Z e. CC ) |
75 |
|
fz0ssnn0 |
|- ( 0 ... ( S x. N ) ) C_ NN0 |
76 |
75 69
|
sselid |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> m e. NN0 ) |
77 |
74 76
|
expcld |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> ( Z ^ m ) e. CC ) |
78 |
49
|
a1i |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( 0 ..^ S ) e. Fin ) |
79 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( _Ind ` NN ) ` A ) : NN --> { 0 , 1 } ) |
80 |
34
|
a1i |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( 1 ... N ) C_ NN ) |
81 |
70
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> m e. ZZ ) |
82 |
71
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> S e. NN0 ) |
83 |
|
simpr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> c e. ( ( 1 ... N ) ( repr ` S ) m ) ) |
84 |
80 81 82 83
|
reprf |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> c : ( 0 ..^ S ) --> ( 1 ... N ) ) |
85 |
84
|
ffvelrnda |
|- ( ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. ( 1 ... N ) ) |
86 |
34 85
|
sselid |
|- ( ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. NN ) |
87 |
79 86
|
ffvelrnd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) e. { 0 , 1 } ) |
88 |
15 87
|
sselid |
|- ( ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) e. CC ) |
89 |
78 88
|
fprodcl |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) e. CC ) |
90 |
73 77 89
|
fsummulc1 |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> ( sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
91 |
4
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> A C_ NN ) |
92 |
91 70 71 72 67
|
hashreprin |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
93 |
92
|
oveq1d |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> ( ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) x. ( Z ^ m ) ) = ( sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
94 |
26
|
fveq1d |
|- ( a e. ( 0 ..^ S ) -> ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
95 |
94
|
adantl |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
96 |
95
|
prodeq2dv |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
97 |
96
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
98 |
97
|
oveq1d |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
99 |
98
|
sumeq2dv |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) x. ( Z ^ m ) ) ) |
100 |
90 93 99
|
3eqtr4rd |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = ( ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) x. ( Z ^ m ) ) ) |
101 |
100
|
sumeq2dv |
|- ( ph -> sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) x. ( Z ^ m ) ) = sum_ m e. ( 0 ... ( S x. N ) ) ( ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) x. ( Z ^ m ) ) ) |
102 |
25 66 101
|
3eqtr3d |
|- ( ph -> ( sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ^ S ) = sum_ m e. ( 0 ... ( S x. N ) ) ( ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) x. ( Z ^ m ) ) ) |
103 |
5
|
oveq1i |
|- ( P ^ S ) = ( sum_ b e. ( A i^i ( 1 ... N ) ) ( Z ^ b ) ^ S ) |
104 |
6
|
oveq1i |
|- ( R x. ( Z ^ m ) ) = ( ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) x. ( Z ^ m ) ) |
105 |
104
|
a1i |
|- ( m e. ( 0 ... ( S x. N ) ) -> ( R x. ( Z ^ m ) ) = ( ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) x. ( Z ^ m ) ) ) |
106 |
105
|
sumeq2i |
|- sum_ m e. ( 0 ... ( S x. N ) ) ( R x. ( Z ^ m ) ) = sum_ m e. ( 0 ... ( S x. N ) ) ( ( # ` ( ( A i^i ( 1 ... N ) ) ( repr ` S ) m ) ) x. ( Z ^ m ) ) |
107 |
102 103 106
|
3eqtr4g |
|- ( ph -> ( P ^ S ) = sum_ m e. ( 0 ... ( S x. N ) ) ( R x. ( Z ^ m ) ) ) |