| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breprexp.n |
|- ( ph -> N e. NN0 ) |
| 2 |
|
breprexp.s |
|- ( ph -> S e. NN0 ) |
| 3 |
|
breprexp.z |
|- ( ph -> Z e. CC ) |
| 4 |
|
breprexp.h |
|- ( ph -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 5 |
|
breprexplemc.t |
|- ( ph -> T e. NN0 ) |
| 6 |
|
breprexplemc.s |
|- ( ph -> ( T + 1 ) <_ S ) |
| 7 |
|
breprexplemc.1 |
|- ( ph -> prod_ a e. ( 0 ..^ T ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( T x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) ) |
| 8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 9 |
5 8
|
eleqtrdi |
|- ( ph -> T e. ( ZZ>= ` 0 ) ) |
| 10 |
|
fzosplitsn |
|- ( T e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( T + 1 ) ) = ( ( 0 ..^ T ) u. { T } ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> ( 0 ..^ ( T + 1 ) ) = ( ( 0 ..^ T ) u. { T } ) ) |
| 12 |
11
|
prodeq1d |
|- ( ph -> prod_ a e. ( 0 ..^ ( T + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = prod_ a e. ( ( 0 ..^ T ) u. { T } ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) ) |
| 13 |
|
nfv |
|- F/ a ph |
| 14 |
|
nfcv |
|- F/_ a sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) |
| 15 |
|
fzofi |
|- ( 0 ..^ T ) e. Fin |
| 16 |
15
|
a1i |
|- ( ph -> ( 0 ..^ T ) e. Fin ) |
| 17 |
|
fzonel |
|- -. T e. ( 0 ..^ T ) |
| 18 |
17
|
a1i |
|- ( ph -> -. T e. ( 0 ..^ T ) ) |
| 19 |
|
fzfid |
|- ( ( ph /\ a e. ( 0 ..^ T ) ) -> ( 1 ... N ) e. Fin ) |
| 20 |
1
|
ad2antrr |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> N e. NN0 ) |
| 21 |
2
|
ad2antrr |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> S e. NN0 ) |
| 22 |
3
|
ad2antrr |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> Z e. CC ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ a e. ( 0 ..^ T ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 24 |
23
|
adantr |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 25 |
5
|
nn0zd |
|- ( ph -> T e. ZZ ) |
| 26 |
2
|
nn0zd |
|- ( ph -> S e. ZZ ) |
| 27 |
5
|
nn0red |
|- ( ph -> T e. RR ) |
| 28 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 29 |
27 28
|
readdcld |
|- ( ph -> ( T + 1 ) e. RR ) |
| 30 |
2
|
nn0red |
|- ( ph -> S e. RR ) |
| 31 |
27
|
lep1d |
|- ( ph -> T <_ ( T + 1 ) ) |
| 32 |
27 29 30 31 6
|
letrd |
|- ( ph -> T <_ S ) |
| 33 |
|
eluz1 |
|- ( T e. ZZ -> ( S e. ( ZZ>= ` T ) <-> ( S e. ZZ /\ T <_ S ) ) ) |
| 34 |
33
|
biimpar |
|- ( ( T e. ZZ /\ ( S e. ZZ /\ T <_ S ) ) -> S e. ( ZZ>= ` T ) ) |
| 35 |
25 26 32 34
|
syl12anc |
|- ( ph -> S e. ( ZZ>= ` T ) ) |
| 36 |
|
fzoss2 |
|- ( S e. ( ZZ>= ` T ) -> ( 0 ..^ T ) C_ ( 0 ..^ S ) ) |
| 37 |
35 36
|
syl |
|- ( ph -> ( 0 ..^ T ) C_ ( 0 ..^ S ) ) |
| 38 |
37
|
sselda |
|- ( ( ph /\ a e. ( 0 ..^ T ) ) -> a e. ( 0 ..^ S ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> a e. ( 0 ..^ S ) ) |
| 40 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 41 |
40
|
a1i |
|- ( ( ph /\ a e. ( 0 ..^ T ) ) -> ( 1 ... N ) C_ NN ) |
| 42 |
41
|
sselda |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> b e. NN ) |
| 43 |
20 21 22 24 39 42
|
breprexplemb |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> ( ( L ` a ) ` b ) e. CC ) |
| 44 |
|
nnssnn0 |
|- NN C_ NN0 |
| 45 |
40 44
|
sstri |
|- ( 1 ... N ) C_ NN0 |
| 46 |
45
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN0 ) |
| 47 |
46
|
ralrimivw |
|- ( ph -> A. a e. ( 0 ..^ T ) ( 1 ... N ) C_ NN0 ) |
| 48 |
47
|
r19.21bi |
|- ( ( ph /\ a e. ( 0 ..^ T ) ) -> ( 1 ... N ) C_ NN0 ) |
| 49 |
48
|
sselda |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> b e. NN0 ) |
| 50 |
22 49
|
expcld |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> ( Z ^ b ) e. CC ) |
| 51 |
43 50
|
mulcld |
|- ( ( ( ph /\ a e. ( 0 ..^ T ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) e. CC ) |
| 52 |
19 51
|
fsumcl |
|- ( ( ph /\ a e. ( 0 ..^ T ) ) -> sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) e. CC ) |
| 53 |
|
simpl |
|- ( ( a = T /\ b e. ( 1 ... N ) ) -> a = T ) |
| 54 |
53
|
fveq2d |
|- ( ( a = T /\ b e. ( 1 ... N ) ) -> ( L ` a ) = ( L ` T ) ) |
| 55 |
54
|
fveq1d |
|- ( ( a = T /\ b e. ( 1 ... N ) ) -> ( ( L ` a ) ` b ) = ( ( L ` T ) ` b ) ) |
| 56 |
55
|
oveq1d |
|- ( ( a = T /\ b e. ( 1 ... N ) ) -> ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) |
| 57 |
56
|
sumeq2dv |
|- ( a = T -> sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) |
| 58 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 59 |
1
|
adantr |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> N e. NN0 ) |
| 60 |
2
|
adantr |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> S e. NN0 ) |
| 61 |
3
|
adantr |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> Z e. CC ) |
| 62 |
4
|
adantr |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 63 |
5
|
nn0ge0d |
|- ( ph -> 0 <_ T ) |
| 64 |
|
zltp1le |
|- ( ( T e. ZZ /\ S e. ZZ ) -> ( T < S <-> ( T + 1 ) <_ S ) ) |
| 65 |
25 26 64
|
syl2anc |
|- ( ph -> ( T < S <-> ( T + 1 ) <_ S ) ) |
| 66 |
6 65
|
mpbird |
|- ( ph -> T < S ) |
| 67 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 68 |
|
elfzo |
|- ( ( T e. ZZ /\ 0 e. ZZ /\ S e. ZZ ) -> ( T e. ( 0 ..^ S ) <-> ( 0 <_ T /\ T < S ) ) ) |
| 69 |
25 67 26 68
|
syl3anc |
|- ( ph -> ( T e. ( 0 ..^ S ) <-> ( 0 <_ T /\ T < S ) ) ) |
| 70 |
63 66 69
|
mpbir2and |
|- ( ph -> T e. ( 0 ..^ S ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> T e. ( 0 ..^ S ) ) |
| 72 |
40
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN ) |
| 73 |
72
|
sselda |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> b e. NN ) |
| 74 |
59 60 61 62 71 73
|
breprexplemb |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 75 |
46
|
sselda |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> b e. NN0 ) |
| 76 |
61 75
|
expcld |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> ( Z ^ b ) e. CC ) |
| 77 |
74 76
|
mulcld |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) e. CC ) |
| 78 |
58 77
|
fsumcl |
|- ( ph -> sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) e. CC ) |
| 79 |
13 14 16 5 18 52 57 78
|
fprodsplitsn |
|- ( ph -> prod_ a e. ( ( 0 ..^ T ) u. { T } ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = ( prod_ a e. ( 0 ..^ T ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) x. sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 80 |
7
|
oveq1d |
|- ( ph -> ( prod_ a e. ( 0 ..^ T ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) x. sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = ( sum_ m e. ( 0 ... ( T x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 81 |
|
fzfid |
|- ( ph -> ( 0 ... ( T x. N ) ) e. Fin ) |
| 82 |
40
|
a1i |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> ( 1 ... N ) C_ NN ) |
| 83 |
|
simpr |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> m e. ( 0 ... ( T x. N ) ) ) |
| 84 |
83
|
elfzelzd |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> m e. ZZ ) |
| 85 |
5
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> T e. NN0 ) |
| 86 |
58
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> ( 1 ... N ) e. Fin ) |
| 87 |
82 84 85 86
|
reprfi |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> ( ( 1 ... N ) ( repr ` T ) m ) e. Fin ) |
| 88 |
15
|
a1i |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( 0 ..^ T ) e. Fin ) |
| 89 |
1
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> N e. NN0 ) |
| 90 |
89
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> N e. NN0 ) |
| 91 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> S e. NN0 ) |
| 92 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> Z e. CC ) |
| 93 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 94 |
37
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( 0 ..^ T ) C_ ( 0 ..^ S ) ) |
| 95 |
94
|
sselda |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> a e. ( 0 ..^ S ) ) |
| 96 |
40
|
a1i |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> ( 1 ... N ) C_ NN ) |
| 97 |
84
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> m e. ZZ ) |
| 98 |
85
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> T e. NN0 ) |
| 99 |
|
simplr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> d e. ( ( 1 ... N ) ( repr ` T ) m ) ) |
| 100 |
96 97 98 99
|
reprf |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> d : ( 0 ..^ T ) --> ( 1 ... N ) ) |
| 101 |
|
simpr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> a e. ( 0 ..^ T ) ) |
| 102 |
100 101
|
ffvelcdmd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> ( d ` a ) e. ( 1 ... N ) ) |
| 103 |
40 102
|
sselid |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> ( d ` a ) e. NN ) |
| 104 |
90 91 92 93 95 103
|
breprexplemb |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 105 |
88 104
|
fprodcl |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 106 |
3
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> Z e. CC ) |
| 107 |
|
fz0ssnn0 |
|- ( 0 ... ( T x. N ) ) C_ NN0 |
| 108 |
107 83
|
sselid |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> m e. NN0 ) |
| 109 |
108
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> m e. NN0 ) |
| 110 |
106 109
|
expcld |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( Z ^ m ) e. CC ) |
| 111 |
105 110
|
mulcld |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) e. CC ) |
| 112 |
87 111
|
fsumcl |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) e. CC ) |
| 113 |
81 58 112 77
|
fsum2mul |
|- ( ph -> sum_ m e. ( 0 ... ( T x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = ( sum_ m e. ( 0 ... ( T x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 114 |
40
|
a1i |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( 1 ... N ) C_ NN ) |
| 115 |
|
simpr |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) |
| 116 |
115
|
elfzelzd |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> m e. ZZ ) |
| 117 |
116
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> m e. ZZ ) |
| 118 |
|
simpr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> b e. ( 1 ... N ) ) |
| 119 |
118
|
elfzelzd |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> b e. ZZ ) |
| 120 |
117 119
|
zsubcld |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( m - b ) e. ZZ ) |
| 121 |
5
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> T e. NN0 ) |
| 122 |
121
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> T e. NN0 ) |
| 123 |
58
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( 1 ... N ) e. Fin ) |
| 124 |
123
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( 1 ... N ) e. Fin ) |
| 125 |
114 120 122 124
|
reprfi |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) e. Fin ) |
| 126 |
74
|
adantlr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 127 |
3
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> Z e. CC ) |
| 128 |
|
fz0ssnn0 |
|- ( 0 ... ( ( T + 1 ) x. N ) ) C_ NN0 |
| 129 |
128 115
|
sselid |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> m e. NN0 ) |
| 130 |
127 129
|
expcld |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( Z ^ m ) e. CC ) |
| 131 |
130
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( Z ^ m ) e. CC ) |
| 132 |
126 131
|
mulcld |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) e. CC ) |
| 133 |
15
|
a1i |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) -> ( 0 ..^ T ) e. Fin ) |
| 134 |
1
|
adantr |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> N e. NN0 ) |
| 135 |
134
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> N e. NN0 ) |
| 136 |
135
|
ad2antrr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> N e. NN0 ) |
| 137 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> S e. NN0 ) |
| 138 |
127
|
ad3antrrr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> Z e. CC ) |
| 139 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 140 |
38
|
ad5ant15 |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> a e. ( 0 ..^ S ) ) |
| 141 |
40
|
a1i |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> ( 1 ... N ) C_ NN ) |
| 142 |
120
|
ad2antrr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> ( m - b ) e. ZZ ) |
| 143 |
122
|
ad2antrr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> T e. NN0 ) |
| 144 |
|
simplr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) |
| 145 |
141 142 143 144
|
reprf |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> d : ( 0 ..^ T ) --> ( 1 ... N ) ) |
| 146 |
|
simpr |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> a e. ( 0 ..^ T ) ) |
| 147 |
145 146
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> ( d ` a ) e. ( 1 ... N ) ) |
| 148 |
40 147
|
sselid |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> ( d ` a ) e. NN ) |
| 149 |
136 137 138 139 140 148
|
breprexplemb |
|- ( ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) /\ a e. ( 0 ..^ T ) ) -> ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 150 |
133 149
|
fprodcl |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) -> prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 151 |
125 132 150
|
fsummulc1 |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 152 |
151
|
sumeq2dv |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) = sum_ b e. ( 1 ... N ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 153 |
|
elfzle2 |
|- ( m e. ( 0 ... ( ( T + 1 ) x. N ) ) -> m <_ ( ( T + 1 ) x. N ) ) |
| 154 |
153
|
adantl |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> m <_ ( ( T + 1 ) x. N ) ) |
| 155 |
134
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> N e. NN0 ) |
| 156 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> S e. NN0 ) |
| 157 |
127
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> Z e. CC ) |
| 158 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 159 |
25
|
peano2zd |
|- ( ph -> ( T + 1 ) e. ZZ ) |
| 160 |
|
eluz |
|- ( ( ( T + 1 ) e. ZZ /\ S e. ZZ ) -> ( S e. ( ZZ>= ` ( T + 1 ) ) <-> ( T + 1 ) <_ S ) ) |
| 161 |
160
|
biimpar |
|- ( ( ( ( T + 1 ) e. ZZ /\ S e. ZZ ) /\ ( T + 1 ) <_ S ) -> S e. ( ZZ>= ` ( T + 1 ) ) ) |
| 162 |
159 26 6 161
|
syl21anc |
|- ( ph -> S e. ( ZZ>= ` ( T + 1 ) ) ) |
| 163 |
|
fzoss2 |
|- ( S e. ( ZZ>= ` ( T + 1 ) ) -> ( 0 ..^ ( T + 1 ) ) C_ ( 0 ..^ S ) ) |
| 164 |
162 163
|
syl |
|- ( ph -> ( 0 ..^ ( T + 1 ) ) C_ ( 0 ..^ S ) ) |
| 165 |
164
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> ( 0 ..^ ( T + 1 ) ) C_ ( 0 ..^ S ) ) |
| 166 |
|
simplr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> x e. ( 0 ..^ ( T + 1 ) ) ) |
| 167 |
165 166
|
sseldd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> x e. ( 0 ..^ S ) ) |
| 168 |
|
simpr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> y e. NN ) |
| 169 |
155 156 157 158 167 168
|
breprexplemb |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ x e. ( 0 ..^ ( T + 1 ) ) ) /\ y e. NN ) -> ( ( L ` x ) ` y ) e. CC ) |
| 170 |
134 121 129 154 169
|
breprexplema |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) = sum_ b e. ( 1 ... N ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) ) |
| 171 |
170
|
oveq1d |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) = ( sum_ b e. ( 1 ... N ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) ) |
| 172 |
126
|
adantr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 173 |
150 172
|
mulcld |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) -> ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) e. CC ) |
| 174 |
125 173
|
fsumcl |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) e. CC ) |
| 175 |
123 130 174
|
fsummulc1 |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( sum_ b e. ( 1 ... N ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) = sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) ) |
| 176 |
125 131 173
|
fsummulc1 |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) ) |
| 177 |
131
|
adantr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) -> ( Z ^ m ) e. CC ) |
| 178 |
150 172 177
|
mulassd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) -> ( ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) = ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 179 |
178
|
sumeq2dv |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 180 |
176 179
|
eqtrd |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 181 |
180
|
sumeq2dv |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ m ) ) = sum_ b e. ( 1 ... N ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 182 |
171 175 181
|
3eqtrd |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) = sum_ b e. ( 1 ... N ) sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 183 |
40
|
a1i |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( 1 ... N ) C_ NN ) |
| 184 |
|
1nn0 |
|- 1 e. NN0 |
| 185 |
184
|
a1i |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> 1 e. NN0 ) |
| 186 |
121 185
|
nn0addcld |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( T + 1 ) e. NN0 ) |
| 187 |
183 116 186 123
|
reprfi |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) e. Fin ) |
| 188 |
|
fzofi |
|- ( 0 ..^ ( T + 1 ) ) e. Fin |
| 189 |
188
|
a1i |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) -> ( 0 ..^ ( T + 1 ) ) e. Fin ) |
| 190 |
134
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> N e. NN0 ) |
| 191 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> S e. NN0 ) |
| 192 |
127
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> Z e. CC ) |
| 193 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 194 |
164
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) -> ( 0 ..^ ( T + 1 ) ) C_ ( 0 ..^ S ) ) |
| 195 |
194
|
sselda |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> a e. ( 0 ..^ S ) ) |
| 196 |
40
|
a1i |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> ( 1 ... N ) C_ NN ) |
| 197 |
116
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> m e. ZZ ) |
| 198 |
186
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> ( T + 1 ) e. NN0 ) |
| 199 |
|
simplr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) |
| 200 |
196 197 198 199
|
reprf |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> d : ( 0 ..^ ( T + 1 ) ) --> ( 1 ... N ) ) |
| 201 |
|
simpr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> a e. ( 0 ..^ ( T + 1 ) ) ) |
| 202 |
200 201
|
ffvelcdmd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> ( d ` a ) e. ( 1 ... N ) ) |
| 203 |
40 202
|
sselid |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> ( d ` a ) e. NN ) |
| 204 |
190 191 192 193 195 203
|
breprexplemb |
|- ( ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) /\ a e. ( 0 ..^ ( T + 1 ) ) ) -> ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 205 |
189 204
|
fprodcl |
|- ( ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ) -> prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 206 |
187 130 205
|
fsummulc1 |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) ) |
| 207 |
152 182 206
|
3eqtr2rd |
|- ( ( ph /\ m e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) = sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 208 |
207
|
sumeq2dv |
|- ( ph -> sum_ m e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) = sum_ m e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 209 |
|
oveq1 |
|- ( n = m -> ( n - b ) = ( m - b ) ) |
| 210 |
209
|
oveq2d |
|- ( n = m -> ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) = ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) ) |
| 211 |
210
|
sumeq1d |
|- ( n = m -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) ) |
| 212 |
|
oveq2 |
|- ( n = m -> ( Z ^ n ) = ( Z ^ m ) ) |
| 213 |
212
|
oveq2d |
|- ( n = m -> ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) = ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) |
| 214 |
211 213
|
oveq12d |
|- ( n = m -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) = ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 215 |
214
|
adantr |
|- ( ( n = m /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) = ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 216 |
215
|
sumeq2dv |
|- ( n = m -> sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) = sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) ) |
| 217 |
216
|
cbvsumv |
|- sum_ n e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) = sum_ m e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( m - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) |
| 218 |
208 217
|
eqtr4di |
|- ( ph -> sum_ m e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) = sum_ n e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) ) |
| 219 |
5 1
|
nn0mulcld |
|- ( ph -> ( T x. N ) e. NN0 ) |
| 220 |
|
oveq2 |
|- ( m = ( n - b ) -> ( ( 1 ... N ) ( repr ` T ) m ) = ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) ) |
| 221 |
220
|
sumeq1d |
|- ( m = ( n - b ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) ) |
| 222 |
|
oveq1 |
|- ( m = ( n - b ) -> ( m + b ) = ( ( n - b ) + b ) ) |
| 223 |
222
|
oveq2d |
|- ( m = ( n - b ) -> ( Z ^ ( m + b ) ) = ( Z ^ ( ( n - b ) + b ) ) ) |
| 224 |
223
|
oveq2d |
|- ( m = ( n - b ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) = ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) |
| 225 |
221 224
|
oveq12d |
|- ( m = ( n - b ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) = ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) ) |
| 226 |
40
|
a1i |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( 1 ... N ) C_ NN ) |
| 227 |
|
uzssz |
|- ( ZZ>= ` -u b ) C_ ZZ |
| 228 |
|
simp2 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> m e. ( ZZ>= ` -u b ) ) |
| 229 |
227 228
|
sselid |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> m e. ZZ ) |
| 230 |
5
|
3ad2ant1 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> T e. NN0 ) |
| 231 |
58
|
3ad2ant1 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( 1 ... N ) e. Fin ) |
| 232 |
226 229 230 231
|
reprfi |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( ( 1 ... N ) ( repr ` T ) m ) e. Fin ) |
| 233 |
15
|
a1i |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( 0 ..^ T ) e. Fin ) |
| 234 |
59
|
3adant2 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> N e. NN0 ) |
| 235 |
234
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> N e. NN0 ) |
| 236 |
60
|
3adant2 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> S e. NN0 ) |
| 237 |
236
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> S e. NN0 ) |
| 238 |
61
|
3adant2 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> Z e. CC ) |
| 239 |
238
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> Z e. CC ) |
| 240 |
62
|
3adant2 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 241 |
240
|
ad2antrr |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
| 242 |
37
|
3ad2ant1 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( 0 ..^ T ) C_ ( 0 ..^ S ) ) |
| 243 |
242
|
adantr |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( 0 ..^ T ) C_ ( 0 ..^ S ) ) |
| 244 |
243
|
sselda |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> a e. ( 0 ..^ S ) ) |
| 245 |
40
|
a1i |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( 1 ... N ) C_ NN ) |
| 246 |
229
|
adantr |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> m e. ZZ ) |
| 247 |
230
|
adantr |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> T e. NN0 ) |
| 248 |
|
simpr |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> d e. ( ( 1 ... N ) ( repr ` T ) m ) ) |
| 249 |
245 246 247 248
|
reprf |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> d : ( 0 ..^ T ) --> ( 1 ... N ) ) |
| 250 |
249
|
adantr |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> d : ( 0 ..^ T ) --> ( 1 ... N ) ) |
| 251 |
|
simpr |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> a e. ( 0 ..^ T ) ) |
| 252 |
250 251
|
ffvelcdmd |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> ( d ` a ) e. ( 1 ... N ) ) |
| 253 |
40 252
|
sselid |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> ( d ` a ) e. NN ) |
| 254 |
235 237 239 241 244 253
|
breprexplemb |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) /\ a e. ( 0 ..^ T ) ) -> ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 255 |
233 254
|
fprodcl |
|- ( ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 256 |
232 255
|
fsumcl |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 257 |
71
|
3adant2 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> T e. ( 0 ..^ S ) ) |
| 258 |
73
|
3adant2 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> b e. NN ) |
| 259 |
234 236 238 240 257 258
|
breprexplemb |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 260 |
229
|
zcnd |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> m e. CC ) |
| 261 |
|
simp3 |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> b e. ( 1 ... N ) ) |
| 262 |
261
|
elfzelzd |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> b e. ZZ ) |
| 263 |
262
|
zcnd |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> b e. CC ) |
| 264 |
260 263
|
subnegd |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( m - -u b ) = ( m + b ) ) |
| 265 |
262
|
znegcld |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> -u b e. ZZ ) |
| 266 |
|
eluzle |
|- ( m e. ( ZZ>= ` -u b ) -> -u b <_ m ) |
| 267 |
228 266
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> -u b <_ m ) |
| 268 |
|
znn0sub |
|- ( ( -u b e. ZZ /\ m e. ZZ ) -> ( -u b <_ m <-> ( m - -u b ) e. NN0 ) ) |
| 269 |
268
|
biimpa |
|- ( ( ( -u b e. ZZ /\ m e. ZZ ) /\ -u b <_ m ) -> ( m - -u b ) e. NN0 ) |
| 270 |
265 229 267 269
|
syl21anc |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( m - -u b ) e. NN0 ) |
| 271 |
264 270
|
eqeltrrd |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( m + b ) e. NN0 ) |
| 272 |
238 271
|
expcld |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( Z ^ ( m + b ) ) e. CC ) |
| 273 |
259 272
|
mulcld |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) e. CC ) |
| 274 |
256 273
|
mulcld |
|- ( ( ph /\ m e. ( ZZ>= ` -u b ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) e. CC ) |
| 275 |
59
|
adantr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> N e. NN0 ) |
| 276 |
|
ssidd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( 1 ... N ) C_ ( 1 ... N ) ) |
| 277 |
|
simpr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) |
| 278 |
277
|
elfzelzd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> n e. ZZ ) |
| 279 |
|
simplr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> b e. ( 1 ... N ) ) |
| 280 |
279
|
elfzelzd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> b e. ZZ ) |
| 281 |
278 280
|
zsubcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( n - b ) e. ZZ ) |
| 282 |
5
|
ad2antrr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> T e. NN0 ) |
| 283 |
27
|
ad2antrr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> T e. RR ) |
| 284 |
275
|
nn0red |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> N e. RR ) |
| 285 |
283 284
|
remulcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( T x. N ) e. RR ) |
| 286 |
280
|
zred |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> b e. RR ) |
| 287 |
219
|
adantr |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> ( T x. N ) e. NN0 ) |
| 288 |
287 75
|
nn0addcld |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> ( ( T x. N ) + b ) e. NN0 ) |
| 289 |
184
|
a1i |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> 1 e. NN0 ) |
| 290 |
288 289
|
nn0addcld |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> ( ( ( T x. N ) + b ) + 1 ) e. NN0 ) |
| 291 |
|
fz2ssnn0 |
|- ( ( ( ( T x. N ) + b ) + 1 ) e. NN0 -> ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) C_ NN0 ) |
| 292 |
290 291
|
syl |
|- ( ( ph /\ b e. ( 1 ... N ) ) -> ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) C_ NN0 ) |
| 293 |
292
|
sselda |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> n e. NN0 ) |
| 294 |
293
|
nn0red |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> n e. RR ) |
| 295 |
25
|
ad2antrr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> T e. ZZ ) |
| 296 |
275
|
nn0zd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> N e. ZZ ) |
| 297 |
295 296
|
zmulcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( T x. N ) e. ZZ ) |
| 298 |
297 280
|
zaddcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( T x. N ) + b ) e. ZZ ) |
| 299 |
|
elfzle1 |
|- ( n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) -> ( ( ( T x. N ) + b ) + 1 ) <_ n ) |
| 300 |
277 299
|
syl |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( ( T x. N ) + b ) + 1 ) <_ n ) |
| 301 |
|
zltp1le |
|- ( ( ( ( T x. N ) + b ) e. ZZ /\ n e. ZZ ) -> ( ( ( T x. N ) + b ) < n <-> ( ( ( T x. N ) + b ) + 1 ) <_ n ) ) |
| 302 |
301
|
biimpar |
|- ( ( ( ( ( T x. N ) + b ) e. ZZ /\ n e. ZZ ) /\ ( ( ( T x. N ) + b ) + 1 ) <_ n ) -> ( ( T x. N ) + b ) < n ) |
| 303 |
298 278 300 302
|
syl21anc |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( T x. N ) + b ) < n ) |
| 304 |
|
ltaddsub |
|- ( ( ( T x. N ) e. RR /\ b e. RR /\ n e. RR ) -> ( ( ( T x. N ) + b ) < n <-> ( T x. N ) < ( n - b ) ) ) |
| 305 |
304
|
biimpa |
|- ( ( ( ( T x. N ) e. RR /\ b e. RR /\ n e. RR ) /\ ( ( T x. N ) + b ) < n ) -> ( T x. N ) < ( n - b ) ) |
| 306 |
285 286 294 303 305
|
syl31anc |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( T x. N ) < ( n - b ) ) |
| 307 |
275 276 281 282 306
|
reprgt |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) = (/) ) |
| 308 |
307
|
sumeq1d |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) = sum_ d e. (/) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) ) |
| 309 |
|
sum0 |
|- sum_ d e. (/) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) = 0 |
| 310 |
308 309
|
eqtrdi |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) = 0 ) |
| 311 |
310
|
oveq1d |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) = ( 0 x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) ) |
| 312 |
74
|
adantr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 313 |
61
|
adantr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> Z e. CC ) |
| 314 |
278
|
zcnd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> n e. CC ) |
| 315 |
280
|
zcnd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> b e. CC ) |
| 316 |
314 315
|
npcand |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( n - b ) + b ) = n ) |
| 317 |
316 293
|
eqeltrd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( n - b ) + b ) e. NN0 ) |
| 318 |
313 317
|
expcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( Z ^ ( ( n - b ) + b ) ) e. CC ) |
| 319 |
312 318
|
mulcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) e. CC ) |
| 320 |
319
|
mul02d |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( 0 x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) = 0 ) |
| 321 |
311 320
|
eqtrd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( ( ( ( T x. N ) + b ) + 1 ) ... ( ( T x. N ) + N ) ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) = 0 ) |
| 322 |
40
|
a1i |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( 1 ... N ) C_ NN ) |
| 323 |
|
fzossfz |
|- ( 0 ..^ b ) C_ ( 0 ... b ) |
| 324 |
|
fzssz |
|- ( 0 ... b ) C_ ZZ |
| 325 |
323 324
|
sstri |
|- ( 0 ..^ b ) C_ ZZ |
| 326 |
|
simpr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> n e. ( 0 ..^ b ) ) |
| 327 |
325 326
|
sselid |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> n e. ZZ ) |
| 328 |
|
simplr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> b e. ( 1 ... N ) ) |
| 329 |
328
|
elfzelzd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> b e. ZZ ) |
| 330 |
327 329
|
zsubcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( n - b ) e. ZZ ) |
| 331 |
5
|
ad2antrr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> T e. NN0 ) |
| 332 |
330
|
zred |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( n - b ) e. RR ) |
| 333 |
|
0red |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> 0 e. RR ) |
| 334 |
27
|
ad2antrr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> T e. RR ) |
| 335 |
|
elfzolt2 |
|- ( n e. ( 0 ..^ b ) -> n < b ) |
| 336 |
335
|
adantl |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> n < b ) |
| 337 |
327
|
zred |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> n e. RR ) |
| 338 |
329
|
zred |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> b e. RR ) |
| 339 |
337 338
|
sublt0d |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( ( n - b ) < 0 <-> n < b ) ) |
| 340 |
336 339
|
mpbird |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( n - b ) < 0 ) |
| 341 |
63
|
ad2antrr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> 0 <_ T ) |
| 342 |
332 333 334 340 341
|
ltletrd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( n - b ) < T ) |
| 343 |
322 330 331 342
|
reprlt |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) = (/) ) |
| 344 |
343
|
sumeq1d |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) = sum_ d e. (/) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) ) |
| 345 |
344 309
|
eqtrdi |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) = 0 ) |
| 346 |
345
|
oveq1d |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) = ( 0 x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) ) |
| 347 |
74
|
adantr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 348 |
61
|
adantr |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> Z e. CC ) |
| 349 |
337
|
recnd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> n e. CC ) |
| 350 |
338
|
recnd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> b e. CC ) |
| 351 |
349 350
|
npcand |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( ( n - b ) + b ) = n ) |
| 352 |
|
fzo0ssnn0 |
|- ( 0 ..^ b ) C_ NN0 |
| 353 |
352 326
|
sselid |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> n e. NN0 ) |
| 354 |
351 353
|
eqeltrd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( ( n - b ) + b ) e. NN0 ) |
| 355 |
348 354
|
expcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( Z ^ ( ( n - b ) + b ) ) e. CC ) |
| 356 |
347 355
|
mulcld |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) e. CC ) |
| 357 |
356
|
mul02d |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( 0 x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) = 0 ) |
| 358 |
346 357
|
eqtrd |
|- ( ( ( ph /\ b e. ( 1 ... N ) ) /\ n e. ( 0 ..^ b ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) = 0 ) |
| 359 |
219 1 225 274 321 358
|
fsum2dsub |
|- ( ph -> sum_ m e. ( 0 ... ( T x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) = sum_ n e. ( 0 ... ( ( T x. N ) + N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) ) |
| 360 |
|
nn0sscn |
|- NN0 C_ CC |
| 361 |
360 5
|
sselid |
|- ( ph -> T e. CC ) |
| 362 |
360 1
|
sselid |
|- ( ph -> N e. CC ) |
| 363 |
361 362
|
adddirp1d |
|- ( ph -> ( ( T + 1 ) x. N ) = ( ( T x. N ) + N ) ) |
| 364 |
363
|
oveq2d |
|- ( ph -> ( 0 ... ( ( T + 1 ) x. N ) ) = ( 0 ... ( ( T x. N ) + N ) ) ) |
| 365 |
128 360
|
sstri |
|- ( 0 ... ( ( T + 1 ) x. N ) ) C_ CC |
| 366 |
|
simplr |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) |
| 367 |
365 366
|
sselid |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> n e. CC ) |
| 368 |
45 360
|
sstri |
|- ( 1 ... N ) C_ CC |
| 369 |
|
simpr |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> b e. ( 1 ... N ) ) |
| 370 |
368 369
|
sselid |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> b e. CC ) |
| 371 |
367 370
|
npcand |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( n - b ) + b ) = n ) |
| 372 |
371
|
eqcomd |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> n = ( ( n - b ) + b ) ) |
| 373 |
372
|
oveq2d |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( Z ^ n ) = ( Z ^ ( ( n - b ) + b ) ) ) |
| 374 |
373
|
oveq2d |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) = ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) |
| 375 |
374
|
oveq2d |
|- ( ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) = ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) ) |
| 376 |
375
|
sumeq2dv |
|- ( ( ph /\ n e. ( 0 ... ( ( T + 1 ) x. N ) ) ) -> sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) = sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) ) |
| 377 |
364 376
|
sumeq12dv |
|- ( ph -> sum_ n e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) = sum_ n e. ( 0 ... ( ( T x. N ) + N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( ( n - b ) + b ) ) ) ) ) |
| 378 |
359 377
|
eqtr4d |
|- ( ph -> sum_ m e. ( 0 ... ( T x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) = sum_ n e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) ( n - b ) ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ n ) ) ) ) |
| 379 |
105
|
adantlr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) e. CC ) |
| 380 |
110
|
adantlr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( Z ^ m ) e. CC ) |
| 381 |
77
|
adantlr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) e. CC ) |
| 382 |
381
|
adantr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) e. CC ) |
| 383 |
379 380 382
|
mulassd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( Z ^ m ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) ) |
| 384 |
74
|
ad4ant13 |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 385 |
76
|
ad4ant13 |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( Z ^ b ) e. CC ) |
| 386 |
380 384 385
|
mulassd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( ( Z ^ m ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ b ) ) = ( ( Z ^ m ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 387 |
384 380 385
|
mulassd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) x. ( Z ^ b ) ) = ( ( ( L ` T ) ` b ) x. ( ( Z ^ m ) x. ( Z ^ b ) ) ) ) |
| 388 |
380 384
|
mulcomd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( Z ^ m ) x. ( ( L ` T ) ` b ) ) = ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) ) |
| 389 |
388
|
oveq1d |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( ( Z ^ m ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ b ) ) = ( ( ( ( L ` T ) ` b ) x. ( Z ^ m ) ) x. ( Z ^ b ) ) ) |
| 390 |
106
|
adantlr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> Z e. CC ) |
| 391 |
75
|
ad4ant13 |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> b e. NN0 ) |
| 392 |
109
|
adantlr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> m e. NN0 ) |
| 393 |
390 391 392
|
expaddd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( Z ^ ( m + b ) ) = ( ( Z ^ m ) x. ( Z ^ b ) ) ) |
| 394 |
393
|
oveq2d |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) = ( ( ( L ` T ) ` b ) x. ( ( Z ^ m ) x. ( Z ^ b ) ) ) ) |
| 395 |
387 389 394
|
3eqtr4d |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( ( Z ^ m ) x. ( ( L ` T ) ` b ) ) x. ( Z ^ b ) ) = ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) |
| 396 |
386 395
|
eqtr3d |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( Z ^ m ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) |
| 397 |
396
|
oveq2d |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( Z ^ m ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) = ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) ) |
| 398 |
383 397
|
eqtrd |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) ) |
| 399 |
398
|
sumeq2dv |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) ) |
| 400 |
87
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( 1 ... N ) ( repr ` T ) m ) e. Fin ) |
| 401 |
111
|
adantlr |
|- ( ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) /\ d e. ( ( 1 ... N ) ( repr ` T ) m ) ) -> ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) e. CC ) |
| 402 |
400 381 401
|
fsummulc1 |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 403 |
74
|
adantlr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( L ` T ) ` b ) e. CC ) |
| 404 |
61
|
adantlr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> Z e. CC ) |
| 405 |
108
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> m e. NN0 ) |
| 406 |
75
|
adantlr |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> b e. NN0 ) |
| 407 |
405 406
|
nn0addcld |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( m + b ) e. NN0 ) |
| 408 |
404 407
|
expcld |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( Z ^ ( m + b ) ) e. CC ) |
| 409 |
403 408
|
mulcld |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) e. CC ) |
| 410 |
400 409 379
|
fsummulc1 |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) = sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) ) |
| 411 |
399 402 410
|
3eqtr4rd |
|- ( ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) /\ b e. ( 1 ... N ) ) -> ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) = ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 412 |
411
|
sumeq2dv |
|- ( ( ph /\ m e. ( 0 ... ( T x. N ) ) ) -> sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) = sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 413 |
412
|
sumeq2dv |
|- ( ph -> sum_ m e. ( 0 ... ( T x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ ( m + b ) ) ) ) = sum_ m e. ( 0 ... ( T x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) ) |
| 414 |
218 378 413
|
3eqtr2rd |
|- ( ph -> sum_ m e. ( 0 ... ( T x. N ) ) sum_ b e. ( 1 ... N ) ( sum_ d e. ( ( 1 ... N ) ( repr ` T ) m ) ( prod_ a e. ( 0 ..^ T ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) x. ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = sum_ m e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) ) |
| 415 |
80 113 414
|
3eqtr2d |
|- ( ph -> ( prod_ a e. ( 0 ..^ T ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) x. sum_ b e. ( 1 ... N ) ( ( ( L ` T ) ` b ) x. ( Z ^ b ) ) ) = sum_ m e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) ) |
| 416 |
12 79 415
|
3eqtrd |
|- ( ph -> prod_ a e. ( 0 ..^ ( T + 1 ) ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( Z ^ b ) ) = sum_ m e. ( 0 ... ( ( T + 1 ) x. N ) ) sum_ d e. ( ( 1 ... N ) ( repr ` ( T + 1 ) ) m ) ( prod_ a e. ( 0 ..^ ( T + 1 ) ) ( ( L ` a ) ` ( d ` a ) ) x. ( Z ^ m ) ) ) |