| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reprval.a |  |-  ( ph -> A C_ NN ) | 
						
							| 2 |  | reprval.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | reprval.s |  |-  ( ph -> S e. NN0 ) | 
						
							| 4 |  | reprlt.1 |  |-  ( ph -> M < S ) | 
						
							| 5 | 1 2 3 | reprval |  |-  ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) | 
						
							| 6 | 2 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M e. RR ) | 
						
							| 8 | 3 | nn0red |  |-  ( ph -> S e. RR ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> S e. RR ) | 
						
							| 10 |  | fzofi |  |-  ( 0 ..^ S ) e. Fin | 
						
							| 11 | 10 | a1i |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> ( 0 ..^ S ) e. Fin ) | 
						
							| 12 |  | nnssre |  |-  NN C_ RR | 
						
							| 13 | 12 | a1i |  |-  ( ph -> NN C_ RR ) | 
						
							| 14 | 1 13 | sstrd |  |-  ( ph -> A C_ RR ) | 
						
							| 15 | 14 | ad2antrr |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> A C_ RR ) | 
						
							| 16 |  | nnex |  |-  NN e. _V | 
						
							| 17 | 16 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 18 | 17 1 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> A e. _V ) | 
						
							| 20 | 10 | elexi |  |-  ( 0 ..^ S ) e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> ( 0 ..^ S ) e. _V ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c e. ( A ^m ( 0 ..^ S ) ) ) | 
						
							| 23 |  | elmapg |  |-  ( ( A e. _V /\ ( 0 ..^ S ) e. _V ) -> ( c e. ( A ^m ( 0 ..^ S ) ) <-> c : ( 0 ..^ S ) --> A ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( ( A e. _V /\ ( 0 ..^ S ) e. _V ) /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c : ( 0 ..^ S ) --> A ) | 
						
							| 25 | 19 21 22 24 | syl21anc |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c : ( 0 ..^ S ) --> A ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> c : ( 0 ..^ S ) --> A ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> a e. ( 0 ..^ S ) ) | 
						
							| 28 | 26 27 | ffvelcdmd |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. A ) | 
						
							| 29 | 15 28 | sseldd |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. RR ) | 
						
							| 30 | 11 29 | fsumrecl |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) ( c ` a ) e. RR ) | 
						
							| 31 | 4 | adantr |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M < S ) | 
						
							| 32 |  | ax-1cn |  |-  1 e. CC | 
						
							| 33 |  | fsumconst |  |-  ( ( ( 0 ..^ S ) e. Fin /\ 1 e. CC ) -> sum_ a e. ( 0 ..^ S ) 1 = ( ( # ` ( 0 ..^ S ) ) x. 1 ) ) | 
						
							| 34 | 10 32 33 | mp2an |  |-  sum_ a e. ( 0 ..^ S ) 1 = ( ( # ` ( 0 ..^ S ) ) x. 1 ) | 
						
							| 35 |  | hashcl |  |-  ( ( 0 ..^ S ) e. Fin -> ( # ` ( 0 ..^ S ) ) e. NN0 ) | 
						
							| 36 | 10 35 | ax-mp |  |-  ( # ` ( 0 ..^ S ) ) e. NN0 | 
						
							| 37 | 36 | nn0cni |  |-  ( # ` ( 0 ..^ S ) ) e. CC | 
						
							| 38 | 37 | mulridi |  |-  ( ( # ` ( 0 ..^ S ) ) x. 1 ) = ( # ` ( 0 ..^ S ) ) | 
						
							| 39 | 34 38 | eqtri |  |-  sum_ a e. ( 0 ..^ S ) 1 = ( # ` ( 0 ..^ S ) ) | 
						
							| 40 |  | hashfzo0 |  |-  ( S e. NN0 -> ( # ` ( 0 ..^ S ) ) = S ) | 
						
							| 41 | 3 40 | syl |  |-  ( ph -> ( # ` ( 0 ..^ S ) ) = S ) | 
						
							| 42 | 39 41 | eqtrid |  |-  ( ph -> sum_ a e. ( 0 ..^ S ) 1 = S ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) 1 = S ) | 
						
							| 44 |  | 1red |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> 1 e. RR ) | 
						
							| 45 | 1 | ad2antrr |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> A C_ NN ) | 
						
							| 46 | 45 28 | sseldd |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. NN ) | 
						
							| 47 |  | nnge1 |  |-  ( ( c ` a ) e. NN -> 1 <_ ( c ` a ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> 1 <_ ( c ` a ) ) | 
						
							| 49 | 11 44 29 48 | fsumle |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) 1 <_ sum_ a e. ( 0 ..^ S ) ( c ` a ) ) | 
						
							| 50 | 43 49 | eqbrtrrd |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> S <_ sum_ a e. ( 0 ..^ S ) ( c ` a ) ) | 
						
							| 51 | 7 9 30 31 50 | ltletrd |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M < sum_ a e. ( 0 ..^ S ) ( c ` a ) ) | 
						
							| 52 | 7 51 | ltned |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M =/= sum_ a e. ( 0 ..^ S ) ( c ` a ) ) | 
						
							| 53 | 52 | necomd |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) ( c ` a ) =/= M ) | 
						
							| 54 | 53 | neneqd |  |-  ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) | 
						
							| 55 | 54 | ralrimiva |  |-  ( ph -> A. c e. ( A ^m ( 0 ..^ S ) ) -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) | 
						
							| 56 |  | rabeq0 |  |-  ( { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } = (/) <-> A. c e. ( A ^m ( 0 ..^ S ) ) -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) | 
						
							| 57 | 55 56 | sylibr |  |-  ( ph -> { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } = (/) ) | 
						
							| 58 | 5 57 | eqtrd |  |-  ( ph -> ( A ( repr ` S ) M ) = (/) ) |