| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|- ( ph -> A C_ NN ) |
| 2 |
|
reprval.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
reprval.s |
|- ( ph -> S e. NN0 ) |
| 4 |
|
reprlt.1 |
|- ( ph -> M < S ) |
| 5 |
1 2 3
|
reprval |
|- ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
| 6 |
2
|
zred |
|- ( ph -> M e. RR ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M e. RR ) |
| 8 |
3
|
nn0red |
|- ( ph -> S e. RR ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> S e. RR ) |
| 10 |
|
fzofi |
|- ( 0 ..^ S ) e. Fin |
| 11 |
10
|
a1i |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> ( 0 ..^ S ) e. Fin ) |
| 12 |
|
nnssre |
|- NN C_ RR |
| 13 |
12
|
a1i |
|- ( ph -> NN C_ RR ) |
| 14 |
1 13
|
sstrd |
|- ( ph -> A C_ RR ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> A C_ RR ) |
| 16 |
|
nnex |
|- NN e. _V |
| 17 |
16
|
a1i |
|- ( ph -> NN e. _V ) |
| 18 |
17 1
|
ssexd |
|- ( ph -> A e. _V ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> A e. _V ) |
| 20 |
10
|
elexi |
|- ( 0 ..^ S ) e. _V |
| 21 |
20
|
a1i |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> ( 0 ..^ S ) e. _V ) |
| 22 |
|
simpr |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c e. ( A ^m ( 0 ..^ S ) ) ) |
| 23 |
|
elmapg |
|- ( ( A e. _V /\ ( 0 ..^ S ) e. _V ) -> ( c e. ( A ^m ( 0 ..^ S ) ) <-> c : ( 0 ..^ S ) --> A ) ) |
| 24 |
23
|
biimpa |
|- ( ( ( A e. _V /\ ( 0 ..^ S ) e. _V ) /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c : ( 0 ..^ S ) --> A ) |
| 25 |
19 21 22 24
|
syl21anc |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> c : ( 0 ..^ S ) --> A ) |
| 26 |
25
|
adantr |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> c : ( 0 ..^ S ) --> A ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> a e. ( 0 ..^ S ) ) |
| 28 |
26 27
|
ffvelcdmd |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. A ) |
| 29 |
15 28
|
sseldd |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. RR ) |
| 30 |
11 29
|
fsumrecl |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) ( c ` a ) e. RR ) |
| 31 |
4
|
adantr |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M < S ) |
| 32 |
|
ax-1cn |
|- 1 e. CC |
| 33 |
|
fsumconst |
|- ( ( ( 0 ..^ S ) e. Fin /\ 1 e. CC ) -> sum_ a e. ( 0 ..^ S ) 1 = ( ( # ` ( 0 ..^ S ) ) x. 1 ) ) |
| 34 |
10 32 33
|
mp2an |
|- sum_ a e. ( 0 ..^ S ) 1 = ( ( # ` ( 0 ..^ S ) ) x. 1 ) |
| 35 |
|
hashcl |
|- ( ( 0 ..^ S ) e. Fin -> ( # ` ( 0 ..^ S ) ) e. NN0 ) |
| 36 |
10 35
|
ax-mp |
|- ( # ` ( 0 ..^ S ) ) e. NN0 |
| 37 |
36
|
nn0cni |
|- ( # ` ( 0 ..^ S ) ) e. CC |
| 38 |
37
|
mulridi |
|- ( ( # ` ( 0 ..^ S ) ) x. 1 ) = ( # ` ( 0 ..^ S ) ) |
| 39 |
34 38
|
eqtri |
|- sum_ a e. ( 0 ..^ S ) 1 = ( # ` ( 0 ..^ S ) ) |
| 40 |
|
hashfzo0 |
|- ( S e. NN0 -> ( # ` ( 0 ..^ S ) ) = S ) |
| 41 |
3 40
|
syl |
|- ( ph -> ( # ` ( 0 ..^ S ) ) = S ) |
| 42 |
39 41
|
eqtrid |
|- ( ph -> sum_ a e. ( 0 ..^ S ) 1 = S ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) 1 = S ) |
| 44 |
|
1red |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> 1 e. RR ) |
| 45 |
1
|
ad2antrr |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> A C_ NN ) |
| 46 |
45 28
|
sseldd |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> ( c ` a ) e. NN ) |
| 47 |
|
nnge1 |
|- ( ( c ` a ) e. NN -> 1 <_ ( c ` a ) ) |
| 48 |
46 47
|
syl |
|- ( ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) /\ a e. ( 0 ..^ S ) ) -> 1 <_ ( c ` a ) ) |
| 49 |
11 44 29 48
|
fsumle |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) 1 <_ sum_ a e. ( 0 ..^ S ) ( c ` a ) ) |
| 50 |
43 49
|
eqbrtrrd |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> S <_ sum_ a e. ( 0 ..^ S ) ( c ` a ) ) |
| 51 |
7 9 30 31 50
|
ltletrd |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M < sum_ a e. ( 0 ..^ S ) ( c ` a ) ) |
| 52 |
7 51
|
ltned |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> M =/= sum_ a e. ( 0 ..^ S ) ( c ` a ) ) |
| 53 |
52
|
necomd |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> sum_ a e. ( 0 ..^ S ) ( c ` a ) =/= M ) |
| 54 |
53
|
neneqd |
|- ( ( ph /\ c e. ( A ^m ( 0 ..^ S ) ) ) -> -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) |
| 55 |
54
|
ralrimiva |
|- ( ph -> A. c e. ( A ^m ( 0 ..^ S ) ) -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) |
| 56 |
|
rabeq0 |
|- ( { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } = (/) <-> A. c e. ( A ^m ( 0 ..^ S ) ) -. sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) |
| 57 |
55 56
|
sylibr |
|- ( ph -> { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } = (/) ) |
| 58 |
5 57
|
eqtrd |
|- ( ph -> ( A ( repr ` S ) M ) = (/) ) |