| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reprval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ ) | 
						
							| 2 |  | reprval.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | reprval.s | ⊢ ( 𝜑  →  𝑆  ∈  ℕ0 ) | 
						
							| 4 |  | reprlt.1 | ⊢ ( 𝜑  →  𝑀  <  𝑆 ) | 
						
							| 5 | 1 2 3 | reprval | ⊢ ( 𝜑  →  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } ) | 
						
							| 6 | 2 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 8 | 3 | nn0red | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑆  ∈  ℝ ) | 
						
							| 10 |  | fzofi | ⊢ ( 0 ..^ 𝑆 )  ∈  Fin | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  ( 0 ..^ 𝑆 )  ∈  Fin ) | 
						
							| 12 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ℕ  ⊆  ℝ ) | 
						
							| 14 | 1 13 | sstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 16 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 18 | 17 1 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝐴  ∈  V ) | 
						
							| 20 | 10 | elexi | ⊢ ( 0 ..^ 𝑆 )  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  ( 0 ..^ 𝑆 )  ∈  V ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) ) | 
						
							| 23 |  | elmapg | ⊢ ( ( 𝐴  ∈  V  ∧  ( 0 ..^ 𝑆 )  ∈  V )  →  ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( ( 𝐴  ∈  V  ∧  ( 0 ..^ 𝑆 )  ∈  V )  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) | 
						
							| 25 | 19 21 22 24 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  𝑎  ∈  ( 0 ..^ 𝑆 ) ) | 
						
							| 28 | 26 27 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  ( 𝑐 ‘ 𝑎 )  ∈  𝐴 ) | 
						
							| 29 | 15 28 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  ( 𝑐 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 30 | 11 29 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 31 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑀  <  𝑆 ) | 
						
							| 32 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 33 |  | fsumconst | ⊢ ( ( ( 0 ..^ 𝑆 )  ∈  Fin  ∧  1  ∈  ℂ )  →  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) 1  =  ( ( ♯ ‘ ( 0 ..^ 𝑆 ) )  ·  1 ) ) | 
						
							| 34 | 10 32 33 | mp2an | ⊢ Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) 1  =  ( ( ♯ ‘ ( 0 ..^ 𝑆 ) )  ·  1 ) | 
						
							| 35 |  | hashcl | ⊢ ( ( 0 ..^ 𝑆 )  ∈  Fin  →  ( ♯ ‘ ( 0 ..^ 𝑆 ) )  ∈  ℕ0 ) | 
						
							| 36 | 10 35 | ax-mp | ⊢ ( ♯ ‘ ( 0 ..^ 𝑆 ) )  ∈  ℕ0 | 
						
							| 37 | 36 | nn0cni | ⊢ ( ♯ ‘ ( 0 ..^ 𝑆 ) )  ∈  ℂ | 
						
							| 38 | 37 | mulridi | ⊢ ( ( ♯ ‘ ( 0 ..^ 𝑆 ) )  ·  1 )  =  ( ♯ ‘ ( 0 ..^ 𝑆 ) ) | 
						
							| 39 | 34 38 | eqtri | ⊢ Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) 1  =  ( ♯ ‘ ( 0 ..^ 𝑆 ) ) | 
						
							| 40 |  | hashfzo0 | ⊢ ( 𝑆  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 𝑆 ) )  =  𝑆 ) | 
						
							| 41 | 3 40 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ..^ 𝑆 ) )  =  𝑆 ) | 
						
							| 42 | 39 41 | eqtrid | ⊢ ( 𝜑  →  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) 1  =  𝑆 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) 1  =  𝑆 ) | 
						
							| 44 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  1  ∈  ℝ ) | 
						
							| 45 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  𝐴  ⊆  ℕ ) | 
						
							| 46 | 45 28 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  ( 𝑐 ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 47 |  | nnge1 | ⊢ ( ( 𝑐 ‘ 𝑎 )  ∈  ℕ  →  1  ≤  ( 𝑐 ‘ 𝑎 ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  ∧  𝑎  ∈  ( 0 ..^ 𝑆 ) )  →  1  ≤  ( 𝑐 ‘ 𝑎 ) ) | 
						
							| 49 | 11 44 29 48 | fsumle | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) 1  ≤  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) ) | 
						
							| 50 | 43 49 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑆  ≤  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) ) | 
						
							| 51 | 7 9 30 31 50 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑀  <  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) ) | 
						
							| 52 | 7 51 | ltned | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑀  ≠  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) ) | 
						
							| 53 | 52 | necomd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  ≠  𝑀 ) | 
						
							| 54 | 53 | neneqd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  →  ¬  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) | 
						
							| 55 | 54 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) ¬  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) | 
						
							| 56 |  | rabeq0 | ⊢ ( { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 }  =  ∅  ↔  ∀ 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) ¬  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) | 
						
							| 57 | 55 56 | sylibr | ⊢ ( 𝜑  →  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 }  =  ∅ ) | 
						
							| 58 | 5 57 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  =  ∅ ) |