Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
2 |
|
reprval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
reprval.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
4 |
|
hashreprin.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
hashreprin.1 |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) |
6 |
5 2 3 4
|
reprfi |
⊢ ( 𝜑 → ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∈ Fin ) |
7 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
9 |
5 2 3 8
|
reprss |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ⊆ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) |
10 |
6 9
|
ssfid |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ∈ Fin ) |
11 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
12 |
|
fsumconst |
⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) 1 = ( ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) · 1 ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) 1 = ( ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) · 1 ) ) |
14 |
11
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) 1 ∈ ℂ ) |
15 |
6
|
olcd |
⊢ ( 𝜑 → ( ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∈ Fin ) ) |
16 |
|
sumss2 |
⊢ ( ( ( ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ⊆ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ∀ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) 1 ∈ ℂ ) ∧ ( ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∈ Fin ) ) → Σ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) 1 = Σ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) if ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) , 1 , 0 ) ) |
17 |
9 14 15 16
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) 1 = Σ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) if ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) , 1 , 0 ) ) |
18 |
5 2 3
|
reprinrn |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐵 ∩ 𝐴 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐴 ) ) ) |
19 |
|
incom |
⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) |
20 |
19
|
oveq1i |
⊢ ( ( 𝐵 ∩ 𝐴 ) ( repr ‘ 𝑆 ) 𝑀 ) = ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) |
21 |
20
|
eleq2i |
⊢ ( 𝑐 ∈ ( ( 𝐵 ∩ 𝐴 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) |
22 |
21
|
bibi1i |
⊢ ( ( 𝑐 ∈ ( ( 𝐵 ∩ 𝐴 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐴 ) ) ↔ ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐴 ) ) ) |
23 |
22
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝑐 ∈ ( ( 𝐵 ∩ 𝐴 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐴 ) ) ) ↔ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐴 ) ) ) ) |
24 |
18 23
|
mpbi |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐴 ) ) ) |
25 |
24
|
baibd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ran 𝑐 ⊆ 𝐴 ) ) |
26 |
25
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → if ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) , 1 , 0 ) = if ( ran 𝑐 ⊆ 𝐴 , 1 , 0 ) ) |
27 |
|
nnex |
⊢ ℕ ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
29 |
28
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ℕ ∈ V ) |
30 |
29
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → ℕ ∈ V ) |
31 |
|
fzofi |
⊢ ( 0 ..^ 𝑆 ) ∈ Fin |
32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝐴 ⊆ ℕ ) |
34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝐵 ⊆ ℕ ) |
35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑀 ∈ ℤ ) |
36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑆 ∈ ℕ0 ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) |
38 |
34 35 36 37
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) |
39 |
38 34
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ℕ ) |
40 |
30 32 33 39
|
prodindf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = if ( ran 𝑐 ⊆ 𝐴 , 1 , 0 ) ) |
41 |
26 40
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) → if ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) , 1 , 0 ) = ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
42 |
41
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) if ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) , 1 , 0 ) = Σ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
43 |
17 42
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) 1 = Σ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
44 |
|
hashcl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ∈ Fin → ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) ∈ ℕ0 ) |
45 |
10 44
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) ∈ ℕ0 ) |
46 |
45
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) ∈ ℂ ) |
47 |
46
|
mulid1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) · 1 ) = ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) ) |
48 |
13 43 47
|
3eqtr3rd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ) = Σ 𝑐 ∈ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |