| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
| 2 |
|
reprval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
reprval.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 4 |
|
fin |
⊢ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) |
| 5 |
|
df-f |
⊢ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ↔ ( 𝑐 Fn ( 0 ..^ 𝑆 ) ∧ ran 𝑐 ⊆ 𝐵 ) ) |
| 6 |
|
ffn |
⊢ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 → 𝑐 Fn ( 0 ..^ 𝑆 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → 𝑐 Fn ( 0 ..^ 𝑆 ) ) |
| 8 |
7
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → ( ran 𝑐 ⊆ 𝐵 ↔ ( 𝑐 Fn ( 0 ..^ 𝑆 ) ∧ ran 𝑐 ⊆ 𝐵 ) ) ) |
| 9 |
8
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → ( ( 𝑐 Fn ( 0 ..^ 𝑆 ) ∧ ran 𝑐 ⊆ 𝐵 ) ↔ ran 𝑐 ⊆ 𝐵 ) ) |
| 10 |
5 9
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ↔ ran 𝑐 ⊆ 𝐵 ) ) |
| 11 |
10
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ran 𝑐 ⊆ 𝐵 ) ) ) |
| 12 |
4 11
|
bitrid |
⊢ ( 𝜑 → ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ran 𝑐 ⊆ 𝐵 ) ) ) |
| 13 |
|
nnex |
⊢ ℕ ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 15 |
14 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 16 |
|
inex1g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 18 |
|
ovex |
⊢ ( 0 ..^ 𝑆 ) ∈ V |
| 19 |
|
elmapg |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ V ∧ ( 0 ..^ 𝑆 ) ∈ V ) → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴 ∩ 𝐵 ) ) ) |
| 20 |
17 18 19
|
sylancl |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴 ∩ 𝐵 ) ) ) |
| 21 |
|
elmapg |
⊢ ( ( 𝐴 ∈ V ∧ ( 0 ..^ 𝑆 ) ∈ V ) → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
| 22 |
15 18 21
|
sylancl |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
| 23 |
22
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐 ⊆ 𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ran 𝑐 ⊆ 𝐵 ) ) ) |
| 24 |
12 20 23
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐 ⊆ 𝐵 ) ) ) |
| 25 |
24
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ↔ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐 ⊆ 𝐵 ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ) ) |
| 26 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 27 |
26 1
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ℕ ) |
| 28 |
27 2 3
|
reprval |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 29 |
28
|
eleq2d |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ 𝑐 ∈ { 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) ) |
| 30 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ↔ ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ) |
| 31 |
29 30
|
bitrdi |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ) ) |
| 32 |
1 2 3
|
reprval |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 33 |
32
|
eleq2d |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ↔ 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) ) |
| 34 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ↔ ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ) |
| 35 |
33 34
|
bitrdi |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ) ) |
| 36 |
35
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐵 ) ↔ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ∧ ran 𝑐 ⊆ 𝐵 ) ) ) |
| 37 |
|
an32 |
⊢ ( ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ∧ ran 𝑐 ⊆ 𝐵 ) ↔ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐 ⊆ 𝐵 ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ) |
| 38 |
36 37
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐵 ) ↔ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐 ⊆ 𝐵 ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) ) ) |
| 39 |
25 31 38
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴 ∩ 𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐 ⊆ 𝐵 ) ) ) |