| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|- ( ph -> A C_ NN ) |
| 2 |
|
reprval.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
reprval.s |
|- ( ph -> S e. NN0 ) |
| 4 |
|
fin |
|- ( c : ( 0 ..^ S ) --> ( A i^i B ) <-> ( c : ( 0 ..^ S ) --> A /\ c : ( 0 ..^ S ) --> B ) ) |
| 5 |
|
df-f |
|- ( c : ( 0 ..^ S ) --> B <-> ( c Fn ( 0 ..^ S ) /\ ran c C_ B ) ) |
| 6 |
|
ffn |
|- ( c : ( 0 ..^ S ) --> A -> c Fn ( 0 ..^ S ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ c : ( 0 ..^ S ) --> A ) -> c Fn ( 0 ..^ S ) ) |
| 8 |
7
|
biantrurd |
|- ( ( ph /\ c : ( 0 ..^ S ) --> A ) -> ( ran c C_ B <-> ( c Fn ( 0 ..^ S ) /\ ran c C_ B ) ) ) |
| 9 |
8
|
bicomd |
|- ( ( ph /\ c : ( 0 ..^ S ) --> A ) -> ( ( c Fn ( 0 ..^ S ) /\ ran c C_ B ) <-> ran c C_ B ) ) |
| 10 |
5 9
|
bitrid |
|- ( ( ph /\ c : ( 0 ..^ S ) --> A ) -> ( c : ( 0 ..^ S ) --> B <-> ran c C_ B ) ) |
| 11 |
10
|
pm5.32da |
|- ( ph -> ( ( c : ( 0 ..^ S ) --> A /\ c : ( 0 ..^ S ) --> B ) <-> ( c : ( 0 ..^ S ) --> A /\ ran c C_ B ) ) ) |
| 12 |
4 11
|
bitrid |
|- ( ph -> ( c : ( 0 ..^ S ) --> ( A i^i B ) <-> ( c : ( 0 ..^ S ) --> A /\ ran c C_ B ) ) ) |
| 13 |
|
nnex |
|- NN e. _V |
| 14 |
13
|
a1i |
|- ( ph -> NN e. _V ) |
| 15 |
14 1
|
ssexd |
|- ( ph -> A e. _V ) |
| 16 |
|
inex1g |
|- ( A e. _V -> ( A i^i B ) e. _V ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( A i^i B ) e. _V ) |
| 18 |
|
ovex |
|- ( 0 ..^ S ) e. _V |
| 19 |
|
elmapg |
|- ( ( ( A i^i B ) e. _V /\ ( 0 ..^ S ) e. _V ) -> ( c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) <-> c : ( 0 ..^ S ) --> ( A i^i B ) ) ) |
| 20 |
17 18 19
|
sylancl |
|- ( ph -> ( c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) <-> c : ( 0 ..^ S ) --> ( A i^i B ) ) ) |
| 21 |
|
elmapg |
|- ( ( A e. _V /\ ( 0 ..^ S ) e. _V ) -> ( c e. ( A ^m ( 0 ..^ S ) ) <-> c : ( 0 ..^ S ) --> A ) ) |
| 22 |
15 18 21
|
sylancl |
|- ( ph -> ( c e. ( A ^m ( 0 ..^ S ) ) <-> c : ( 0 ..^ S ) --> A ) ) |
| 23 |
22
|
anbi1d |
|- ( ph -> ( ( c e. ( A ^m ( 0 ..^ S ) ) /\ ran c C_ B ) <-> ( c : ( 0 ..^ S ) --> A /\ ran c C_ B ) ) ) |
| 24 |
12 20 23
|
3bitr4d |
|- ( ph -> ( c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) <-> ( c e. ( A ^m ( 0 ..^ S ) ) /\ ran c C_ B ) ) ) |
| 25 |
24
|
anbi1d |
|- ( ph -> ( ( c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) <-> ( ( c e. ( A ^m ( 0 ..^ S ) ) /\ ran c C_ B ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) ) |
| 26 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 27 |
26 1
|
sstrid |
|- ( ph -> ( A i^i B ) C_ NN ) |
| 28 |
27 2 3
|
reprval |
|- ( ph -> ( ( A i^i B ) ( repr ` S ) M ) = { c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
| 29 |
28
|
eleq2d |
|- ( ph -> ( c e. ( ( A i^i B ) ( repr ` S ) M ) <-> c e. { c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) ) |
| 30 |
|
rabid |
|- ( c e. { c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } <-> ( c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) |
| 31 |
29 30
|
bitrdi |
|- ( ph -> ( c e. ( ( A i^i B ) ( repr ` S ) M ) <-> ( c e. ( ( A i^i B ) ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) ) |
| 32 |
1 2 3
|
reprval |
|- ( ph -> ( A ( repr ` S ) M ) = { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) |
| 33 |
32
|
eleq2d |
|- ( ph -> ( c e. ( A ( repr ` S ) M ) <-> c e. { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } ) ) |
| 34 |
|
rabid |
|- ( c e. { c e. ( A ^m ( 0 ..^ S ) ) | sum_ a e. ( 0 ..^ S ) ( c ` a ) = M } <-> ( c e. ( A ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) |
| 35 |
33 34
|
bitrdi |
|- ( ph -> ( c e. ( A ( repr ` S ) M ) <-> ( c e. ( A ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) ) |
| 36 |
35
|
anbi1d |
|- ( ph -> ( ( c e. ( A ( repr ` S ) M ) /\ ran c C_ B ) <-> ( ( c e. ( A ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) /\ ran c C_ B ) ) ) |
| 37 |
|
an32 |
|- ( ( ( c e. ( A ^m ( 0 ..^ S ) ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) /\ ran c C_ B ) <-> ( ( c e. ( A ^m ( 0 ..^ S ) ) /\ ran c C_ B ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) |
| 38 |
36 37
|
bitrdi |
|- ( ph -> ( ( c e. ( A ( repr ` S ) M ) /\ ran c C_ B ) <-> ( ( c e. ( A ^m ( 0 ..^ S ) ) /\ ran c C_ B ) /\ sum_ a e. ( 0 ..^ S ) ( c ` a ) = M ) ) ) |
| 39 |
25 31 38
|
3bitr4d |
|- ( ph -> ( c e. ( ( A i^i B ) ( repr ` S ) M ) <-> ( c e. ( A ( repr ` S ) M ) /\ ran c C_ B ) ) ) |