Metamath Proof Explorer


Theorem reprinrn

Description: Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
Assertion reprinrn φcABreprSMcAreprSMrancB

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 fin c:0..^SABc:0..^SAc:0..^SB
5 df-f c:0..^SBcFn0..^SrancB
6 ffn c:0..^SAcFn0..^S
7 6 adantl φc:0..^SAcFn0..^S
8 7 biantrurd φc:0..^SArancBcFn0..^SrancB
9 8 bicomd φc:0..^SAcFn0..^SrancBrancB
10 5 9 bitrid φc:0..^SAc:0..^SBrancB
11 10 pm5.32da φc:0..^SAc:0..^SBc:0..^SArancB
12 4 11 bitrid φc:0..^SABc:0..^SArancB
13 nnex V
14 13 a1i φV
15 14 1 ssexd φAV
16 inex1g AVABV
17 15 16 syl φABV
18 ovex 0..^SV
19 elmapg ABV0..^SVcAB0..^Sc:0..^SAB
20 17 18 19 sylancl φcAB0..^Sc:0..^SAB
21 elmapg AV0..^SVcA0..^Sc:0..^SA
22 15 18 21 sylancl φcA0..^Sc:0..^SA
23 22 anbi1d φcA0..^SrancBc:0..^SArancB
24 12 20 23 3bitr4d φcAB0..^ScA0..^SrancB
25 24 anbi1d φcAB0..^Sa0..^Sca=McA0..^SrancBa0..^Sca=M
26 inss1 ABA
27 26 1 sstrid φAB
28 27 2 3 reprval φABreprSM=cAB0..^S|a0..^Sca=M
29 28 eleq2d φcABreprSMccAB0..^S|a0..^Sca=M
30 rabid ccAB0..^S|a0..^Sca=McAB0..^Sa0..^Sca=M
31 29 30 bitrdi φcABreprSMcAB0..^Sa0..^Sca=M
32 1 2 3 reprval φAreprSM=cA0..^S|a0..^Sca=M
33 32 eleq2d φcAreprSMccA0..^S|a0..^Sca=M
34 rabid ccA0..^S|a0..^Sca=McA0..^Sa0..^Sca=M
35 33 34 bitrdi φcAreprSMcA0..^Sa0..^Sca=M
36 35 anbi1d φcAreprSMrancBcA0..^Sa0..^Sca=MrancB
37 an32 cA0..^Sa0..^Sca=MrancBcA0..^SrancBa0..^Sca=M
38 36 37 bitrdi φcAreprSMrancBcA0..^SrancBa0..^Sca=M
39 25 31 38 3bitr4d φcABreprSMcAreprSMrancB