| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodindf.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
prodindf.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
prodindf.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑂 ) |
| 4 |
|
prodindf.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑂 ) |
| 5 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) ) |
| 6 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 7 |
1 3 6
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 9 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑂 ) |
| 10 |
8 9
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 0 , 1 } ) |
| 11 |
5 2 10
|
fprodex01 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = if ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 , 1 , 0 ) ) |
| 12 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 13 |
12
|
eqeq1d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 ↔ ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ) ) |
| 14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 ↔ ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 ↔ ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ) ) |
| 16 |
15
|
ifbid |
⊢ ( 𝜑 → if ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 , 1 , 0 ) = if ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 , 1 , 0 ) ) |
| 17 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 18 |
17
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 → ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) |
| 19 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 20 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 21 |
20
|
nfrn |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
| 23 |
21 22
|
nfss |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 |
| 24 |
19 23
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝐴 ) → ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) |
| 26 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 |
|
eqidd |
⊢ ( 𝜑 → 𝑘 = 𝑘 ) |
| 28 |
26 27
|
fveq12d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ) |
| 29 |
28
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ) |
| 30 |
29
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ) |
| 31 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 32 |
26
|
fneq1d |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ) ) |
| 33 |
31 32
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ) |
| 35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
| 36 |
|
fnfvelrn |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 38 |
30 37
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 40 |
25 39
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 41 |
40
|
ex |
⊢ ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) → ( 𝑘 ∈ 𝐴 → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 42 |
24 41
|
ralrimi |
⊢ ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 43 |
42
|
ex |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 44 |
18 43
|
impbid2 |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ↔ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ) |
| 45 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑂 ∈ 𝑉 ) |
| 46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ 𝑂 ) |
| 47 |
|
ind1a |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑂 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 48 |
45 46 9 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 49 |
48
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 50 |
26
|
rneqd |
⊢ ( 𝜑 → ran 𝐹 = ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 51 |
50
|
sseq1d |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ 𝐵 ↔ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ) |
| 52 |
44 49 51
|
3bitr4d |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ran 𝐹 ⊆ 𝐵 ) ) |
| 53 |
52
|
ifbid |
⊢ ( 𝜑 → if ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 , 1 , 0 ) = if ( ran 𝐹 ⊆ 𝐵 , 1 , 0 ) ) |
| 54 |
11 16 53
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = if ( ran 𝐹 ⊆ 𝐵 , 1 , 0 ) ) |