Step |
Hyp |
Ref |
Expression |
1 |
|
prodindf.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
prodindf.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
prodindf.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑂 ) |
4 |
|
prodindf.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑂 ) |
5 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) ) |
6 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
7 |
1 3 6
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
9 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑂 ) |
10 |
8 9
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ { 0 , 1 } ) |
11 |
5 2 10
|
fprodex01 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = if ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 , 1 , 0 ) ) |
12 |
|
2fveq3 |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 ↔ ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ) ) |
14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 ↔ ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 ↔ ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ) ) |
16 |
15
|
ifbid |
⊢ ( 𝜑 → if ( ∀ 𝑙 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑙 ) ) = 1 , 1 , 0 ) = if ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 , 1 , 0 ) ) |
17 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) |
18 |
17
|
rnmptss |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 → ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
20 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) |
21 |
20
|
nfrn |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
23 |
21 22
|
nfss |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 |
24 |
19 23
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝐴 ) → ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) |
26 |
4
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
27 |
|
eqidd |
⊢ ( 𝜑 → 𝑘 = 𝑘 ) |
28 |
26 27
|
fveq12d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ) |
29 |
28
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ) |
30 |
29
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ) |
31 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
32 |
26
|
fneq1d |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ) ) |
33 |
31 32
|
mpbid |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
36 |
|
fnfvelrn |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) Fn 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
38 |
30 37
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
39 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
40 |
25 39
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
41 |
40
|
ex |
⊢ ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) → ( 𝑘 ∈ 𝐴 → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
42 |
24 41
|
ralrimi |
⊢ ( ( 𝜑 ∧ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 → ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
44 |
18 43
|
impbid2 |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ↔ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ) |
45 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑂 ∈ 𝑉 ) |
46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ 𝑂 ) |
47 |
|
ind1a |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑂 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
48 |
45 46 9 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
49 |
48
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ∀ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
50 |
26
|
rneqd |
⊢ ( 𝜑 → ran 𝐹 = ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
51 |
50
|
sseq1d |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ 𝐵 ↔ ran ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ⊆ 𝐵 ) ) |
52 |
44 49 51
|
3bitr4d |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 ↔ ran 𝐹 ⊆ 𝐵 ) ) |
53 |
52
|
ifbid |
⊢ ( 𝜑 → if ( ∀ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = 1 , 1 , 0 ) = if ( ran 𝐹 ⊆ 𝐵 , 1 , 0 ) ) |
54 |
11 16 53
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = if ( ran 𝐹 ⊆ 𝐵 , 1 , 0 ) ) |