| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
0red |
⊢ ( 𝑂 ∈ 𝑉 → 0 ∈ ℝ ) |
| 3 |
|
1red |
⊢ ( 𝑂 ∈ 𝑉 → 1 ∈ ℝ ) |
| 4 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 5 |
4
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → 0 ≠ 1 ) |
| 6 |
|
eqid |
⊢ ( 𝑎 ∈ 𝒫 𝑂 ↦ ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ 𝑎 , 1 , 0 ) ) ) = ( 𝑎 ∈ 𝒫 𝑂 ↦ ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ 𝑎 , 1 , 0 ) ) ) |
| 7 |
1 2 3 5 6
|
pw2f1o |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑎 ∈ 𝒫 𝑂 ↦ ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ 𝑎 , 1 , 0 ) ) ) : 𝒫 𝑂 –1-1-onto→ ( { 0 , 1 } ↑m 𝑂 ) ) |
| 8 |
|
indv |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝟭 ‘ 𝑂 ) = ( 𝑎 ∈ 𝒫 𝑂 ↦ ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ 𝑎 , 1 , 0 ) ) ) ) |
| 9 |
8
|
f1oeq1d |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1-onto→ ( { 0 , 1 } ↑m 𝑂 ) ↔ ( 𝑎 ∈ 𝒫 𝑂 ↦ ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ 𝑎 , 1 , 0 ) ) ) : 𝒫 𝑂 –1-1-onto→ ( { 0 , 1 } ↑m 𝑂 ) ) ) |
| 10 |
7 9
|
mpbird |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1-onto→ ( { 0 , 1 } ↑m 𝑂 ) ) |